Effect of Ag on interfacial segregation in Mg-Gd-Y-(Ag)-Zr alloy

被引:112
作者
Zhou, H. [1 ,2 ]
Cheng, G. M. [2 ]
Ma, X. L. [2 ]
Xu, W. Z. [2 ]
Mathaudhu, S. N. [3 ]
Wang, Q. D. [1 ,2 ]
Zhu, Y. T. [2 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Natl Engn Res Ctr Light Alloys, Net Forming & State Key Lab Met Matrix Composite, Shanghai 200240, Peoples R China
[2] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[3] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[4] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Magnesium alloys; Interface; Segregation; HAADF-STEM; Crystal structure; EMBEDDED-ATOM POTENTIALS; HIGH-STRENGTH; MECHANICAL-PROPERTIES; ORDERED STRUCTURE; MAGNESIUM ALLOY; Y-ALLOY; MG; MICROSTRUCTURE; DEFORMATION; TEMPERATURE;
D O I
10.1016/j.actamat.2015.05.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interfaces such as twin boundaries, stacking faults and grain boundaries often play an important role in controlling mechanical properties of metals through interaction with dislocations. Segregation of alloy elements and impurities to these interfaces can stabilize them and produce a large strengthening effect. Here we report the effect of Ag on segregation of alloy elements at twin boundaries, stacking faults and grain boundaries in the Mg-Gd system. Specifically, for the first time a spinal-shaped periodic segregation is observed at the (10 (1) over bar2) twin boundary and high-angle lamellar grain boundary in the Mg-Gd-Y-Zr alloy due to the presence of the Ag addition. The segregation consists of Gd- and Ag-rich columns. It appears that high Ag content in the spinal-shaped segregation induces fcc-like cell structures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 44 条
[1]   Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM [J].
Abe, E ;
Kawamura, Y ;
Hayashi, K ;
Inoue, A .
ACTA MATERIALIA, 2002, 50 (15) :3845-3857
[2]   Preface to the viewpoint set on: The current state of magnesium alloy science and technology [J].
Agnew, S. R. ;
Nie, J. F. .
SCRIPTA MATERIALIA, 2010, 63 (07) :671-673
[3]   MODIFIED EMBEDDED-ATOM POTENTIALS FOR HCP METALS [J].
BASKES, MI ;
JOHNSON, RA .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1994, 2 (01) :147-163
[4]   Grain boundary strengthening in alumina by rare earth impurities [J].
Buban, JP ;
Matsunaga, K ;
Chen, J ;
Shibata, N ;
Ching, WY ;
Yamamoto, T ;
Ikuhara, Y .
SCIENCE, 2006, 311 (5758) :212-215
[5]   Segregation and clustering of solutes at grain boundaries in Mg-rare earth solid solutions [J].
Bugnet, M. ;
Kula, A. ;
Niewczas, M. ;
Botton, G. A. .
ACTA MATERIALIA, 2014, 79 :66-73
[6]   Nucleation and stability of twins in hcp metals [J].
Capolungo, L. ;
Beyerlein, I. J. .
PHYSICAL REVIEW B, 2008, 78 (02)
[7]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[8]   A model for ⟨c plus a⟩ dislocation transmission across nano-spaced parallel basal stacking faults in a HCP alloy [J].
Gu, Pei ;
Zhu, Yuntian ;
Mathaudhu, Suveen N. .
PHILOSOPHICAL MAGAZINE LETTERS, 2015, 95 (01) :58-66
[9]   Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting [J].
Guo, W. ;
Wang, Q. D. ;
Ye, B. ;
Liu, M. P. ;
Peng, T. ;
Liu, X. T. ;
Zhou, H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 540 :115-122
[10]   Solute clustering and grain boundary segregation in extruded dilute Mg-Gd alloys [J].
Hadorn, J. P. ;
Sasaki, T. T. ;
Nakata, T. ;
Ohkubo, T. ;
Kamado, S. ;
Hono, K. .
SCRIPTA MATERIALIA, 2014, 93 :28-31