Static output polynomial control for linear structures

被引:7
作者
Agrawal, AK
Yang, JN
机构
[1] Dept. of Civ. and Envir. Engrg., Univ. of California, Irvine
[2] Dept. of Civ. and Envir. Engrg., Univ. of California, Irvine, CA
来源
JOURNAL OF ENGINEERING MECHANICS-ASCE | 1997年 / 123卷 / 06期
关键词
D O I
10.1061/(ASCE)0733-9399(1997)123:6(639)
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Optimal polynomial controllers have been proposed recently for applications to active/hybrid control of seismically excited structures. Such controllers have been demonstrated to be effective in limiting the peak dynamic response of structures. In this technical note, a static output feedback polynomial controller is proposed. The static output polynomial controller uses only the information measured from a limited number of sensors installed at strategic locations, without an observer, thus facilitating practical applications of active/hybrid control systems to civil engineering structures. Advantages of the proposed static output controller, in terms of the load-adaptive capability for limiting the peak response of the structure and required control energies, are demonstrated by simulation results.
引用
收藏
页码:639 / 643
页数:5
相关论文
共 13 条
[1]   Optimal polynomial control of seismically excited linear structures [J].
Agrawal, AK ;
Yang, JN .
JOURNAL OF ENGINEERING MECHANICS, 1996, 122 (08) :753-761
[2]  
AGRAWAL AK, 1995, NCEER950019 STAT U N
[3]   COMPUTATION OF OPTIMAL OUTPUT FEEDBACK GAINS FOR LINEAR-MULTIVARIABLE SYSTEMS [J].
CHOI, SS ;
SIRISENA, HR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (03) :257-258
[4]   SOLUTION OF OPTIMAL CONSTANT OUTPUT FEEDBACK PROBLEM BY CONJUGATE GRADIENTS [J].
HORISBER.HP ;
BELANGER, PR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (04) :434-435
[5]  
HOUSNER G, 1994, P 1 WORLD C STRUCT C
[6]   ON DETERMINATION OF OPTIMAL CONSTANT OUTPUT FEEDBACK GAINS FOR LINEAR MULTIVARIABLE SYSTEMS [J].
LEVINE, WS ;
ATHANS, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (01) :44-+
[7]   CONVERGENCE OF A NUMERICAL ALGORITHM FOR CALCULATING OPTIMAL OUTPUT-FEEDBACK GAINS [J].
MOERDER, DD ;
CALISE, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (09) :900-903
[8]  
SYRMOS VL, 1994, IEEE DECIS CONTR P, P837, DOI 10.1109/CDC.1994.410963
[9]   A GLOBALLY CONVERGENT ALGORITHM FOR THE OPTIMAL CONSTANT OUTPUT-FEEDBACK PROBLEM [J].
TOIVONEN, HT .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (06) :1589-1599
[10]   Nonlinear control strategies for limiting dynamic response extremes [J].
Tomasula, DP ;
Spencer, BF ;
Sain, MK .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1996, 122 (03) :218-229