The vertical distribution and control of microbial necromass carbon in forest soils

被引:133
作者
Ni, Xiangyin [1 ]
Liao, Shu [1 ]
Tan, Siyi [1 ]
Peng, Yan [2 ]
Wang, Dingyi [1 ]
Yue, Kai [1 ,3 ]
Wu, Fuzhong [1 ]
Yang, Yusheng [1 ]
机构
[1] Fujian Normal Univ, Sch Geog Sci, Key Lab Humid Subtrop Eco Geog Proc, Minist Educ, 8 Shangshan Rd, Fuzhou 350007, Peoples R China
[2] Univ Copenhagen, Dept Geosci & Nat Resource Management, Frederiksberg, Denmark
[3] Aarhus Univ, Ctr Biodivers Dynam Changing Word BIOCHANGE, Dept Biol, Sect Ecoinformat & Biodivers, Aarhus, Denmark
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2020年 / 29卷 / 10期
基金
中国国家自然科学基金;
关键词
amino sugars; microbial biomarker; microbial necromass carbon; microbial residues; mineral protection; soil organic carbon; ORGANIC-MATTER; PLANT INPUTS; USE EFFICIENCY; DECOMPOSITION; TURNOVER; RESIDUES; NITROGEN; FUNGAL; ROOTS;
D O I
10.1111/geb.13159
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim Forest soils contain large amounts of terrestrial organic carbon (C), but the formation pathway of soil organic C (SOC) remains unclear. Recent evidence suggests that microbial necromass is a significant source of SOC, yet a global quantitative assessment across the whole soil profile is lacking. We aimed to assess the vertical distribution and control of microbial-derived SOC in forest soils. Location Global forests. Time period 1996-2019. Major taxa studied Soil microbial necromass carbon. Methods We evaluated the proportions of fungal and bacterial necromass C in total SOC in the litter layer, O horizon soil, and various depths of mineral soil in forests using microbial biomarker (glucosamine and muramic acid) data. Results The total microbial necromass C increased significantly with soil depth, ranging from 30% of SOC in O horizon soil to 62% of SOC in mineral soils below 50 cm. However, only bacterial necromass C followed this increasing trend with soil depth; fungal necromass C showed little variation across the whole soil profile. Higher fungal and bacterial necromass C was observed in soils with lower C/N ratios and smaller aggregate sizes. Soil C/N ratio and microbial biomass C dominantly determined microbial necromass C in surface soil (above 20 cm), but soil clay content was the primary factor in subsoil (below 20 cm). Main conclusions Microbial necromass C accounted for high percentages of the total SOC in forest soils (particularly at depths >20 cm), but its long-term stabilization may be governed by different mechanisms at different soil horizons. Substrate quality regulates microbial activity and then controls biomass turnover in surface soil, while aggregate occlusion facilitates mineral protection of microbial necromass C in subsoil. These differential controls of microbial-derived organic C could be applied in Earth system studies for predicting soil organic C dynamics in forests.
引用
收藏
页码:1829 / 1839
页数:11
相关论文
共 42 条
[1]   Microbial colonisation of roots as a function of plant species [J].
Appuhn, Astrid ;
Joergensen, Rainer Georg .
SOIL BIOLOGY & BIOCHEMISTRY, 2006, 38 (05) :1040-1051
[2]   Structure and function of the global topsoil microbiome [J].
Bahram, Mohammad ;
Hildebrand, Falk ;
Forslund, Sofia K. ;
Anderson, Jennifer L. ;
Soudzilovskaia, Nadejda A. ;
Bodegom, Peter M. ;
Bengtsson-Palme, Johan ;
Anslan, Sten ;
Coelho, Luis Pedro ;
Harend, Helery ;
Huerta-Cepas, Jaime ;
Medema, Marnix H. ;
Maltz, Mia R. ;
Mundra, Sunil ;
Olsson, Pal Axel ;
Pent, Mari ;
Polme, Sergei ;
Sunagawa, Shinichi ;
Ryberg, Martin ;
Tedersoo, Leho ;
Bork, Peer .
NATURE, 2018, 560 (7717) :233-+
[3]   Atmosphere-soil carbon transfer as a function of soil depth [J].
Balesdent, Jerome ;
Basile-Doelsch, Isabelle ;
Chadoeuf, Joel ;
Cornu, Sophie ;
Derrien, Delphine ;
Fekiacova, Zuzana ;
Hatte, Christine .
NATURE, 2018, 559 (7715) :599-+
[4]   Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth [J].
Bradford, Mark A. ;
Keiser, Ashley D. ;
Davies, Christian A. ;
Mersmann, Calley A. ;
Strickland, Michael S. .
BIOGEOCHEMISTRY, 2013, 113 (1-3) :271-281
[5]   Direct Observations of the Occlusion of Soil Organic Matter within Calcite [J].
Chi, Jialin ;
Zhang, Wenjun ;
Wang, Lijun ;
Putnis, Christine V. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (14) :8097-8104
[6]   Roots and Associated Fungi Drive Long-Term Carbon Sequestration in Boreal Forest [J].
Clemmensen, K. E. ;
Bahr, A. ;
Ovaskainen, O. ;
Dahlberg, A. ;
Ekblad, A. ;
Wallander, H. ;
Stenlid, J. ;
Finlay, R. D. ;
Wardle, D. A. ;
Lindahl, B. D. .
SCIENCE, 2013, 339 (6127) :1615-1618
[7]  
Cotrufo MF, 2015, NAT GEOSCI, V8, P776, DOI [10.1038/ngeo2520, 10.1038/NGEO2520]
[8]   The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? [J].
Cotrufo, M. Francesca ;
Wallenstein, Matthew D. ;
Boot, Claudia M. ;
Denef, Karolien ;
Paul, Eldor .
GLOBAL CHANGE BIOLOGY, 2013, 19 (04) :988-995
[9]  
Doetterl S, 2015, NAT GEOSCI, V8, P780, DOI [10.1038/NGEO2516, 10.1038/ngeo2516]
[10]   Soil organic matter turnover is governed by accessibility not recalcitrance [J].
Dungait, Jennifer A. J. ;
Hopkins, David W. ;
Gregory, Andrew S. ;
Whitmore, Andrew P. .
GLOBAL CHANGE BIOLOGY, 2012, 18 (06) :1781-1796