Photonic-plasmonic scattering resonances in deterministic aperiodic structures

被引:126
|
作者
Gopinath, Ashwin [1 ]
Boriskina, Svetlana V. [1 ]
Feng, Ning-Ning [1 ]
Reinhard, Bjoern M. [2 ]
Dal Negro, Luca [1 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Chem, Boston, MA 02215 USA
关键词
D O I
10.1021/nl8013692
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we combine experimental dark-field scattering spectroscopy and accurate electrodynamics calculations to investigate the scattering properties of two-dimensional plasmonic lattices based on the concept of aperiodic order. In particular, by discussing visible light scattering from periodic, Fibonacci, Thue-Morse and Rudin-Shapiro lattices fabricated by electron-beam lithography on transparent quartz substrates, we demonstrate that deterministic aperiodic Au nanoparticle arrays give rise to broad plasmonic resonances spanning the entire visible spectrum. In addition, we show that far-field diffractive coupling is responsible for the formation of characteristic photonic-plasmonic scattering modes in aperiodic arrays of metal nanoparticles. Accurate scattering simulations based on the generalized Mie theory approach support our experimental results. The possibility of engineering complex metal nanoparticle arrays with distinctive plasmonic resonances extending across the entire visible spectrum can have a significant impact on the design and fabrication of novel nanodevices based on broadband plasmonic enhancement.
引用
收藏
页码:2423 / 2431
页数:9
相关论文
共 50 条
  • [1] Engineering photonic-plasmonic aperiodic surfaces for optical biosensing
    Dal Negro, Luca
    Gopinath, Ashwin
    Boriskina, Svetlana
    Lee, Sylvanus
    Pasquale, Alyssa
    Lawrence, Nate
    Trevino, Jacob
    Walsh, Gary
    FRONTIERS IN PATHOGEN DETECTION: FROM NANOSENSORS TO SYSTEMS, 2010, 7553
  • [2] Collective resonances in hybrid photonic-plasmonic nanostructures
    Ershov, Alexander E.
    Bikbaev, Rashid G.
    Rasskazov, Ilia L.
    Gerasimov, Valeriy S.
    Timofeev, Ivan V.
    Polyutov, Sergey P.
    Karpov, Sergey V.
    METANANO 2019, 2020, 1461
  • [3] Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization
    Thakkar, Niket
    Rea, Morgan T.
    Smith, Kevin C.
    Heylman, Kevin D.
    Quillin, Steven C.
    Knapper, Kassandra A.
    Horak, Erik H.
    Masiello, David J.
    Goldsmith, Randall H.
    NANO LETTERS, 2017, 17 (11) : 6927 - 6934
  • [4] Hybrid photonic-plasmonic resonances to control spontaneous and stimulated emission
    Koenderink, A. Femius
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [5] Deterministic aperiodic photonic structures based on woodpiles
    Renner, Michael
    von Freymann, Georg
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [6] Flexible nanoimprinted substrate integrating piezoelectric potential and photonic-plasmonic resonances
    Alotaibi, Aeshah F.
    Gan, Rongcheng
    Kume, Eni
    Duleba, Dominik
    Alanazi, Ahmed
    Finlay, Allan
    Johnson, Robert P.
    Rice, James H.
    NANOSCALE ADVANCES, 2025, 7 (08): : 2360 - 2367
  • [7] Enhancing the plasmonic component of photonic-plasmonic resonances in self-assembled dielectric spheres on Ag
    Moon, Cheon Woo
    Kim, Geonyoung
    Hyun, Jerome Kartham
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (05) : 1764 - 1771
  • [8] Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays
    Hong, Yan
    Reinhard, Bjoern M.
    OPTICAL MATERIALS EXPRESS, 2014, 4 (11): : 2409 - 2422
  • [9] Rational Assembly of Optoplasmonic Hetero-nanoparticle Arrays with Tunable Photonic-Plasmonic Resonances
    Hong, Yan
    Qiu, Yue
    Chen, Tianhong
    Reinhard, Bjoern M.
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (06) : 739 - 746
  • [10] Selectively enhanced Raman/fluorescence spectra in photonic-plasmonic hybrid structures
    Qian, Jisong
    Zhu, Zebin
    Yuan, Jing
    Liu, Ying
    Liu, Bing
    Zhao, Xiangwei
    Jiang, Liyong
    NANOSCALE ADVANCES, 2020, 2 (10): : 4682 - 4688