REMARK ON WELL-POSEDNESS AND ILL-POSEDNESS FOR THE KDV EQUATION

被引:0
作者
Kato, Takamori [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
KdV equation; well-posedness; ill-posedness; Cauchy problem; Fourier restriction norm; low regularity; INITIAL-VALUE PROBLEM; DE-VRIES EQUATION; CAUCHY-PROBLEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the KdV equation with low regularity initial data given in the space H-s,H-a(R), which is defined by the norm parallel to phi parallel to H-s,H-a = parallel to <xi >(s-a)vertical bar xi vertical bar(a)(phi) over cap parallel to(L xi 2). We obtain the local well-posedness in H-s,H-a with s >= max{-3/4, -a - 3/2}, -3/2 < a <= 0 and (s, a) not equal (-3/4, -3/4). The proof is based on Kishimoto's work [12] which proved the sharp well-posedness in the Sobolev space H-3/4(R). Moreover we prove ill-posedness when s < max{-3/4, -a - 3/2}, a <= -3/2 or a > 0.
引用
收藏
页数:15
相关论文
共 19 条
[1]   Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation [J].
Bejenaru, I ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :228-259
[2]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[3]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[4]  
Bourgain J., 1997, Selecta Math. (N.S.), V3, P115
[5]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[6]  
Christ M, 2003, AM J MATH, V125, P1235
[7]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[8]   Global well-posedness of Korteweg-de Vries equation in H-3/4(R) [J].
Guo, Zihua .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (06) :583-597
[9]  
HOLMER J, ELECT J DIFFERENTIAL, V2007
[10]   On the ill-posedness of some canonical dispersive equations [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :617-633