Time-Fractional Telegrapher's Equation (P1) Approximation for the Transport Equation

被引:30
作者
Espinosa-Paredes, Gilberto [1 ]
Antonio Polo-Labarrios, Marco [1 ,2 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Area Ingn Recursos Energet, Mexico City 09340, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Sistemas Energet, Mexico City 04510, DF, Mexico
关键词
DIFFUSION;
D O I
10.13182/NSE11-58
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this technical note we develop a new approximation from the solution of the time-dependent Boltzmann equation, which includes a fractional constitutive equation of the neutron current density, for a general medium. The fractional constitutive equation in combination with the conservation law that governs the particle collision and reaction processes (P-1) approximation for the transport equation gives a time-fractional telegrapher's equation (TFTE). The wave velocity found with this approximation is 3(-gamma/2) for gamma < 1. The numerical results are compared with the exact solution and Heizler's approximation. We found that the TFTE gives the best estimate for a purely absorbing medium, where most approximations fail. The asymptotic diffusion coefficient was applied for a heterogeneous medium, and the results show that the behavior of the TFTE improves.
引用
收藏
页码:258 / 264
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Constitutive laws for the neutron density current [J].
Espinosa-Paredes, Gilberto ;
Morales-Sandoval, Jaime B. ;
Vasquez-Rodriguez, Rodolfo ;
Espinosa-Martinez, Erick-G. .
ANNALS OF NUCLEAR ENERGY, 2008, 35 (10) :1963-1967
[3]   Detecting long-range correlation with detrended fluctuation analysis:: Application to BWR stability [J].
Espinosa-Paredes, Gilberto ;
Alvarez-Ramirez, Jose ;
Vazquez, Alejandro .
ANNALS OF NUCLEAR ENERGY, 2006, 33 (16) :1309-1314
[4]   Asymptotic Telegrapher's Equation (P1) Approximation for the Transport Equation [J].
Heizler, Shay I. .
NUCLEAR SCIENCE AND ENGINEERING, 2010, 166 (01) :17-35
[5]  
Klafter J., 1997, The Physics of Complex Systems
[6]   Finite difference approximations for fractional advection-dispersion flow equations [J].
Meerschaert, MM ;
Tadjeran, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) :65-77
[7]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[8]   MOSAIC ORGANIZATION OF DNA NUCLEOTIDES [J].
PENG, CK ;
BULDYREV, SV ;
HAVLIN, S ;
SIMONS, M ;
STANLEY, HE ;
GOLDBERGER, AL .
PHYSICAL REVIEW E, 1994, 49 (02) :1685-1689
[10]   1/fα fractal noise generation from Grunwald-Letnikov formula [J].
Rodriguez, Eduardo ;
Carlos Echeverria, Juan ;
Alvarez-Ramirez, Jose .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :882-888