A lower semicontinuous regularization for set-valued mappings and its applications

被引:0
作者
Ait Mansour, M. [1 ]
Durea, M. [2 ]
Thera, M. [3 ,4 ]
机构
[1] Univ Cadi Ayyad, Fac Poly Disciplinaire, Safi 4600, Morocco
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[3] Univ Limoges, F-87060 Limoges, France
[4] XLIM, UMR 6172, F-87060 Limoges, France
关键词
set-valued mappings; lower semicontinuity; regularization; approximate selections; fixed points; differential inclusions; variational inequalities;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A basic fact in real analysis is that every real-valued function f admits a lower semicontinuous regularization (f) under bar, defined by means of the lower Emit of f: (f) under bar (x) := lim inf f(y -> x) (y). This fact breaks down for set-valued mappings. In this note, we first provide some counterexamples. We try further to define a kind of lower semicontinuous regularization for a given set-valued mapping and we point out some general applications.
引用
收藏
页码:473 / 484
页数:12
相关论文
共 9 条
[1]   Approximate fixed point theorems in Banach spaces with applications in game theory [J].
Brânzei, R ;
Morgan, J ;
Scalzo, V ;
Tijs, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) :619-628
[2]  
Cellina A, 1969, ANN MAT PUR APPL, V82, P17, DOI DOI 10.1007/BF02410784
[3]  
Fan K., 1972, INEQUALITIES, P103
[4]   Semicontinuity of vector-valued mappings [J].
Mansour, M. Ait ;
Malivert, C. ;
Thera, M. .
OPTIMIZATION, 2007, 56 (1-2) :241-252
[5]   Lower semicontinuous regularization for vector-valued mappings [J].
Mansour, M. Ait ;
Metrane, A. ;
Thera, M. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (02) :283-309
[6]  
Martínez-Legaz JE, 2006, MATH SCAND, V98, P97
[7]   CONTINUOUS SELECTIONS .2. [J].
MICHAEL, E .
ANNALS OF MATHEMATICS, 1956, 64 (03) :562-580
[8]   CONTINUOUS SELECTIONS .1. [J].
MICHAEL, E .
ANNALS OF MATHEMATICS, 1956, 63 (02) :361-382
[9]  
Penot JP, 2001, APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, P255