Quantum Computation with Abelian Anyons

被引:19
|
作者
Lloyd, Seth [1 ]
机构
[1] MIT 3 160, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
quantum computing; fault tolerance; topological quantum computing;
D O I
10.1023/A:1019649101654
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A universal quantum computer can be constructed using abelian anyons. Two qubit quantum logic gates such as controlled-NOT operations are performed using topological effects. Single-anyon operations such as hopping from site to site on a lattice suffice to perform all quantum logic operations. Anyonic quantum computation might be realized using quasiparticles of the fractional quantum Hall effect.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [21] Mathematical models of quantum computation
    Tetsuro Nishino
    New Generation Computing, 2002, 20 : 317 - 337
  • [22] Introduction to Quantum Computation Reliability
    Thornton, Mitchell A.
    2020 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2020,
  • [23] Quantum computation of stopping power for inertial fusion target design
    Rubin, Nicholas C.
    Berry, Dominic W.
    Kononov, Alina
    Malone, Fionn D.
    Khattar, Tanuj
    White, Alec
    Lee, Joonho
    Neven, Hartmut
    Babbush, Ryan
    Baczewski, Andrew D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (23)
  • [24] Differential geometry of quantum computation
    Brandt, Howard E.
    JOURNAL OF MODERN OPTICS, 2008, 55 (19-20) : 3403 - 3412
  • [25] Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation
    Zhou, Huiyang
    Byrd, Gregory T.
    IEEE COMPUTER ARCHITECTURE LETTERS, 2019, 18 (02) : 111 - 114
  • [26] Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation
    Liu, Ji
    Byrd, Gregory T.
    Zhou, Huiyang
    TWENTY-FIFTH INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS (ASPLOS XXV), 2020, : 1017 - 1030
  • [27] The quantum query complexity of the abelian hidden subgroup problem
    Koiran, Pascal
    Nesme, Vincent
    Portier, Natacha
    THEORETICAL COMPUTER SCIENCE, 2007, 380 (1-2) : 115 - 126
  • [28] Counting abelian squares efficiently for a problem in quantum computing
    Bennink, Ryan
    JOURNAL OF COMBINATORICS, 2023, 14 (04) : 445 - 459
  • [29] Lattice-gas quantum computation
    Yepez, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1587 - 1596
  • [30] Accuracy threshold for postselected quantum computation
    Aliferis, Panos
    Gottesman, Daniel
    Preskill, John
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (3-4) : 181 - 244