Quantum Computation with Abelian Anyons

被引:19
|
作者
Lloyd, Seth [1 ]
机构
[1] MIT 3 160, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
quantum computing; fault tolerance; topological quantum computing;
D O I
10.1023/A:1019649101654
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A universal quantum computer can be constructed using abelian anyons. Two qubit quantum logic gates such as controlled-NOT operations are performed using topological effects. Single-anyon operations such as hopping from site to site on a lattice suffice to perform all quantum logic operations. Anyonic quantum computation might be realized using quasiparticles of the fractional quantum Hall effect.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [1] Quantum Computation with Abelian Anyons
    Seth Lloyd
    Quantum Information Processing, 2002, 1 : 13 - 18
  • [2] Universal Quantum Computation with Abelian Anyon Models
    Wootton, James R.
    Pachos, Jiannis K.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 270 (02) : 209 - 218
  • [3] The quantum computer condition: Requirements for viable computation
    Gilbert, Gerald
    Hamrick, Michael
    Thayer, F. Javier
    Weinstein, Yaakov S.
    QUANTUM INFORMATION AND COMPUTATION IV, 2006, 6244
  • [4] Integrable quantum computation
    Zhang, Yong
    QUANTUM INFORMATION PROCESSING, 2013, 12 (01) : 631 - 639
  • [5] Integrable quantum computation
    Yong Zhang
    Quantum Information Processing, 2013, 12 : 631 - 639
  • [6] The Quantum Future of Computation
    Svore, Krysta M.
    Troyer, Matthias
    COMPUTER, 2016, 49 (09) : 21 - 30
  • [7] Classical simulability, entanglement breaking, and quantum computation thresholds
    Virmani, S
    Huelga, SF
    Plenio, MB
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 144 - 157
  • [8] Multiplication algorithm on quantum computation
    Chen, CY
    Hsueh, CC
    FCS '05: Proceedings of the 2005 International Conference on Foundations of Computer Science, 2005, : 38 - 45
  • [9] Riemannian Geometry of Quantum Computation
    Brandt, Howard E.
    QUANTUM INFORMATION SCIENCE AND ITS CONTRIBUTIONS TO MATHEMATICS, 2010, 68 : 61 - 101
  • [10] How to Verify a Quantum Computation
    Broadbent, Anne
    THEORY OF COMPUTING, 2018, 14