Grain-scale processes governing shear band initiation and evolution in sands

被引:188
作者
Rechenmacher, AL [1 ]
机构
[1] Univ So Calif, Dept Civil Engn, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
shear band; granular material; bifurcation; sand; digital image correlation (DIC); micro-structure;
D O I
10.1016/j.jmps.2005.08.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A variety of experimental techniques have been used to advance understanding of strain localization phenomena in sands. However, all of these methods have fallen short in characterizing the evolution of the grain-scale processes that necessarily control shear band formation and growth in sands. This paper presents results of application of the non-destructive displacement measurement technique of digital image correlation (DIC) to measure two- and three-dimensional surface displacements on plane strain and axisymmetric sand specimens over short time steps. The abundance of local displacement data, high level of accuracy, and nearly continuous (spatially and temporally) record of displacement evolution afforded by the DIC technique has finally enabled a means to quantify local displacements to particulate-scale intensity. The data have been used to evaluate the local displacement mechanisms leading to the triggering of the formation of persistent shear bands, the timing of shear band formation with regard to the achievement of peak stress, and the character of displacements within fully formed shear bands. Insights are offered regarding the relation between strain localization and global stress-strain behavior, and the ensuing interpretations of shear banding as a hardening or softening phenomenon. Comparison of behavior between plane strain and triaxial tests offer additional perspective on the influences of three-dimensional stresses and boundary conditions on shear banding. The results further shed light on the micro-deformation mechanisms (i.e. buckling columns) responsible for the observed local strain non-uniformities that characterize "steady-state" shear band evolution. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 45
页数:24
相关论文
共 41 条
[1]   Strain localization in sand: Plane strain versus triaxial compression [J].
Alshibli, Khalid A. ;
Batiste, Susan N. ;
Sture, Stein .
Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129 (06) :483-494
[2]  
Alshibli KA, 2000, GEOTECH TEST J, V23, P274
[3]   Sand shear band thickness measurements by digital imaging techniques [J].
Alshibli, KA ;
Sture, S .
JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 1999, 13 (02) :103-109
[4]   Granular materials: constitutive equations and strain localization [J].
Anand, L ;
Gu, C .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (08) :1701-1733
[5]  
[Anonymous], THESIS NW U EVANSTON
[6]   A NUMERICAL INVESTIGATION OF THE STRUCTURE OF PERSISTENT SHEAR BANDS IN GRANULAR MEDIA [J].
BARDET, JP ;
PROUBET, J .
GEOTECHNIQUE, 1991, 41 (04) :599-613
[7]   Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material [J].
Bauer, E .
MECHANICS OF MATERIALS, 1999, 31 (09) :597-609
[8]   DIGITAL IMAGE CORRELATION USING NEWTON-RAPHSON METHOD OF PARTIAL-DIFFERENTIAL CORRECTION [J].
BRUCK, HA ;
MCNEILL, SR ;
SUTTON, MA ;
PETERS, WH .
EXPERIMENTAL MECHANICS, 1989, 29 (03) :261-267
[9]   LOCALIZATION OF THE DEFORMATION IN TESTS ON SAND SAMPLE [J].
DESRUES, J ;
LANIER, J ;
STUTZ, P .
ENGINEERING FRACTURE MECHANICS, 1985, 21 (04) :909-921
[10]   Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography [J].
Desrues, J ;
Chambon, R ;
Mokni, M ;
Mazerolle, F .
GEOTECHNIQUE, 1996, 46 (03) :529-546