RAINFALL EROSIVITY FOR THE STATE OF RIO DE JANEIRO ESTIMATED BY ARTIFICIAL NEURAL NETWORK

被引:6
作者
de Carvalho, Daniel F. [1 ]
Khoury Junior, Joseph K. [2 ]
Varella, Carlos A. A. [1 ]
Giori, Jacqueline Z.
Machado, Roriz L. [3 ]
机构
[1] UFRRJ, Inst Tecnol, Dept Engn, BR-465 Seropedica, RJ, Brazil
[2] Univ Fed Vicosa, Dept Engn Prod & Mecan, Vicosa, MG, Brazil
[3] Inst Fed Educ Ciencia & Tecnol Goiano, Ceres, Go, Brazil
来源
ENGENHARIA AGRICOLA | 2012年 / 32卷 / 01期
关键词
geographic information system; interpolation methods; soil conservation; VARIABILITY;
D O I
10.1590/S0100-69162012000100020
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.
引用
收藏
页码:197 / 207
页数:11
相关论文
共 19 条
[1]  
CAMARGO A.P., 1997, Revista Brasileira de Agrometeorologia, Santa Maria, V5, P89, DOI [10.1590/S1415-43662007000600006, DOI 10.1590/S1415-43662007000600006]
[2]  
Carvalho Daniel F. de, 2005, Rev. bras. eng. agríc. ambient., V9, P7, DOI 10.1590/S1415-43662005000100002
[3]   TOPOGRAPHY AND SPATIAL VARIABILITY OF SOIL PHYSICAL PROPERTIES [J].
Ceddia, Marcos Bacis ;
Vieira, Sidney Rosa ;
Oliveira Villela, Andre Luis ;
Mota, Lenilson dos Santos ;
Cunha dos Anjos, Lucia Helena ;
de Carvalho, Daniel Fonseca .
SCIENTIA AGRICOLA, 2009, 66 (03) :338-352
[4]   Rainfall erosivity map for Brazil [J].
da Silva, AM .
CATENA, 2004, 57 (03) :251-259
[5]  
de Carvalho D.F., 2010, ENGENHARIA AGRICOLA, V30, P244
[6]  
Gonçalves Flávio A., 2006, Rev. bras. eng. agríc. ambient., V10, P269, DOI 10.1590/S1415-43662006000200004
[7]  
GONCALVES F.A., 2002, THESIS U FEDERAL VIC
[8]   ANALYSIS OF RAINFALL EROSIVITY ASSOCIATED TO PLUVIAL PRECIPITATION PATTERNS IN THE RIBEIRAO DAS LAJES REGION, RIO DE JANEIRO STATE, BRAZIL [J].
Machado, Roriz Luciano ;
de Carvalho, Daniel Fonseca ;
Costa, Janaina Ribeiro ;
de Oliveira Neto, Dionizio Honorio ;
Pinto, Marinaldo Ferreira .
REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2008, 32 (05) :2113-2123
[9]  
MONTEBELLER C.A., 2005, THESIS U FEDERAL RUR
[10]  
Montebeller Claudinei A., 2007, Eng. Agríc., V27, P426, DOI 10.1590/S0100-69162007000300011