Electrochemically Stable Rechargeable Lithium-Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide

被引:190
作者
Chung, Sheng-Heng [1 ,2 ]
Han, Pauline [1 ,2 ]
Singhal, Richa [3 ]
Kalra, Vibha [3 ]
Manthiram, Arumugam [1 ,2 ]
机构
[1] Univ Texas Austin, Electrochem Energy Lab, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[3] Drexel Univ, Dept Chem & Biol Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
cell configuration; lithium-sulfur batteries; microstructures; polysulfide trapping; pore size analysis; HIGH-RATE CAPABILITY; LI-S BATTERIES; POROUS CARBON; RECENT PROGRESS; KOH ACTIVATION; OXIDE COATINGS; PERFORMANCE; CATHODE; DISCHARGE; NANOTUBES;
D O I
10.1002/aenm.201500738
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a primary component in lithium-sulfur (Li-S) batteries, the separator may require a custom design in order to facilitate electrochemical stability and reversibility. Here, a custom separator with an activated carbon nanofiber (ACNF)-filter coated onto a polypropylene membrane is presented. The entire configuration is comprised of the ACNF filter arranged adjacent to the sulfur cathode so that it can filter out the freely migrating polysulfides and suppress the severe polysulfide diffusion. Four differently optimized ACNF-filter-coated separators have been developed with tunable micropores as an investigation into the electrochemical and engineering design parameters of functionalized separators. The optimized parameters that are verified by electrochemical and microstructural analyses require the coated ACNF filter to possess the following: (i) a porous architecture with abundant micropores, (ii) small micropore sizes, and (iii) high electrical conductivity and effective electrolyte immersion. It is found that the ACNF20-filter-coated separator demonstrates an overall superior boost in the electrochemical utilization (discharge capacity: 1270 mA h g(-1)) and polysulfide retention (capacity fade rate: 0.13% cycle(-1) after 200 cycles). These results show that the modified thin-film-coating technique is a viable approach to designing ultratough ACNF-filter-coated separators with outstanding mechanical strength and flexibility as an advanced component in Li-S cells.
引用
收藏
页数:12
相关论文
共 85 条
[1]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[2]   Mesoporous Carbon Inter layers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium-Sulfur Batteries [J].
Balach, Juan ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (09) :4580-4587
[3]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[4]   AB-INITIO STUDY OF THE ELECTRONIC-STRUCTURES OF LITHIUM-CONTAINING DIATOMIC-MOLECULES AND IONS [J].
BOLDYREV, AI ;
SIMONS, J ;
SCHLEYER, PV .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (11) :8793-8804
[5]   Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
CHEMICAL COMMUNICATIONS, 2013, 49 (90) :10545-10562
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[7]   Recent advances in lithium-sulfur batteries [J].
Chen, Lin ;
Shaw, Leon L. .
JOURNAL OF POWER SOURCES, 2014, 267 :770-783
[8]   From a historic review to horizons beyond: lithium-sulphur batteries run on the wheels [J].
Chen, Renjie ;
Zhao, Teng ;
Wu, Feng .
CHEMICAL COMMUNICATIONS, 2015, 51 (01) :18-33
[9]   Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A796-A799
[10]   A Polyethylene Glycol-Supported Microporous Carbon Coating as a Polysulfide Trap for Utilizing Pure Sulfur Cathodes in Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2014, 26 (43) :7352-7357