Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models

被引:0
|
作者
Hasan, M. D. Rokibul [1 ]
Sabariego, Ruth V. [1 ]
Geuzaine, Christophe [2 ]
Paquay, Yannick [3 ]
机构
[1] Katholieke Univ Leuven, EnergyVille, Leuven, Belgium
[2] Univ Liege, ACE, Liege, Belgium
[3] FRS FNRS, Brussels, Belgium
来源
2016 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON) | 2016年
关键词
Reduced-order model; proper orthogonal decomposition; Krylov subspace methods; finite elements; eddy currents; TRANSFORMERS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the proper orthogonal decomposition and the Arnoldi-based Krylov subspace methods are applied to the magnetodynamic finite element analysis of power electronic converters. The performance of these two model order reduction techniques is compared both in frequency and time domain. Moreover, two original, adaptive and automated greedy snapshots selection methods are investigated using either local or global quantities for selecting the snapshots (frequencies or time steps).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A reduced-order model for wall shear stress in abdominal aortic aneurysms by proper orthogonal decomposition
    Chang, Gary Han
    Schirmer, Clemens M.
    Modarres-Sadeghi, Yahya
    JOURNAL OF BIOMECHANICS, 2017, 54 : 33 - 43
  • [32] A methodology for generating reduced-order models for large-scale buildings using the Krylov subspace method
    Kim, Donghun
    Bae, Yeonjin
    Yun, Sehyun
    Braun, James E.
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2020, 13 (04) : 419 - 429
  • [33] A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics
    Li, Kun
    Huang, Ting-Zhu
    Li, Liang
    Lanteri, Stephane
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 128 - 145
  • [34] A Nonintrusive Parametrized Reduced-Order Model for Periodic Flows Based on Extended Proper Orthogonal Decomposition
    Li, Teng
    Deng, Shiyuan
    Zhang, Kun
    Wei, Haibo
    Wang, Runlong
    Fan, Jun
    Xin, Jianqiang
    Yao, Jianyao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2021, 18 (09)
  • [35] A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation
    San, Omer
    Iliescu, Traian
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (05) : 1289 - 1319
  • [36] Open-loop control of cavity noise using Proper Orthogonal Decomposition reduced-order model
    Nagarajan, Kaushik Kumar
    Singha, Sintu
    Cordier, Laurent
    Airiau, Christophe
    COMPUTERS & FLUIDS, 2018, 160 : 1 - 13
  • [37] Towards Reduced Order Models via Robust Proper Orthogonal Decomposition to capture personalised aortic haemodynamics
    Chatpattanasiri, Chotirawee
    Franzetti, Gaia
    Bonfanti, Mirko
    Diaz-Zuccarini, Vanessa
    Balabani, Stavroula
    JOURNAL OF BIOMECHANICS, 2023, 158
  • [38] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION (vol 11, pg 522, 2013)
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04) : 1311 - 1311
  • [39] A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition
    Cao, Yanhua
    Zhu, Jiang
    Navon, I. M.
    Luo, Zhendong
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (10) : 1571 - 1583
  • [40] Generation of low-order reservoir models using Krylov-enhanced proper orthogonal decomposition method
    Cao, Jing
    Zhao, Hui
    Yu, Gaoming
    GEOSYSTEM ENGINEERING, 2016, 19 (06) : 302 - 311