Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models

被引:0
|
作者
Hasan, M. D. Rokibul [1 ]
Sabariego, Ruth V. [1 ]
Geuzaine, Christophe [2 ]
Paquay, Yannick [3 ]
机构
[1] Katholieke Univ Leuven, EnergyVille, Leuven, Belgium
[2] Univ Liege, ACE, Liege, Belgium
[3] FRS FNRS, Brussels, Belgium
来源
2016 IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON) | 2016年
关键词
Reduced-order model; proper orthogonal decomposition; Krylov subspace methods; finite elements; eddy currents; TRANSFORMERS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, the proper orthogonal decomposition and the Arnoldi-based Krylov subspace methods are applied to the magnetodynamic finite element analysis of power electronic converters. The performance of these two model order reduction techniques is compared both in frequency and time domain. Moreover, two original, adaptive and automated greedy snapshots selection methods are investigated using either local or global quantities for selecting the snapshots (frequencies or time steps).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Constrained reduced-order models based on proper orthogonal decomposition
    Reddy, Sohail R.
    Freno, Brian A.
    Cizmas, Paul G. A.
    Gokaltun, Seckin
    McDaniel, Dwayne
    Dulikravich, George S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 18 - 34
  • [2] Acceleration techniques for reduced-order models based on proper orthogonal decomposition
    Cizmas, Paul G. A.
    Richardson, Brian R.
    Brenner, Thomas A.
    O'Brien, Thomas J.
    Breault, Ronald W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) : 7791 - 7812
  • [3] A REDUCED-ORDER APPROACH OF DISTRIBUTED PARAMETER MODELS USING PROPER ORTHOGONAL DECOMPOSITION
    Valbuena, M.
    Sarabia, D.
    de Prada, C.
    21ST EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2011, 29 : 26 - 30
  • [4] An object-oriented framework for reduced-order models using proper orthogonal decomposition (POD)
    Aquino, Wilkins
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (41-44) : 4375 - 4390
  • [5] Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition
    Zhang, Kun
    Yao, Jianyao
    Zhu, Wenxiang
    Cao, Zhifu
    Li, Teng
    Xin, Jianqiang
    AEROSPACE, 2024, 11 (04)
  • [6] An efficient proper orthogonal decomposition based reduced-order model for compressible flows
    Krath, Elizabeth H.
    Carpenter, Forrest L.
    Cizmas, Paul G. A.
    Johnston, David A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426 (426)
  • [7] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    van Doren, Jorn F. M.
    Markovinovic, Renato
    Jansen, Jan-Dirk
    COMPUTATIONAL GEOSCIENCES, 2006, 10 (01) : 137 - 158
  • [8] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    Jorn F. M. van Doren
    Renato Markovinović
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 137 - 158
  • [9] Study on Burnup Calculation Method Based on Proper Orthogonal Decomposition Reduced-order
    Zhang B.
    Bi Y.
    Gong H.
    Zhang Y.
    Yuan X.
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2023, 57 (10): : 1938 - 1948
  • [10] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    MULTISCALE MODELING & SIMULATION, 2013, 11 (02) : 522 - 544