On the continuity of the critical value for long range percolation in the exponential case

被引:18
|
作者
Meester, R [1 ]
Steif, JE [1 ]
机构
[1] CHALMERS UNIV TECHNOL,DEPT MATH,S-41296 GOTHENBURG,SWEDEN
关键词
D O I
10.1007/BF02099722
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that for a long range percolation model with exponentially decaying connections, the limit of critical values of any sequence of long range percolation models approaching the original model from below is the critical value for the original long range percolation model. As an interesting corollary, this implies that if a long range percolation model with exponential connections is supercritical, then it still percolates even if all long bonds are removed. We also show that the percolation probability is continuous (in a certain sense) in the supercritical regime for long range percolation models with exponential connections.
引用
收藏
页码:483 / 504
页数:22
相关论文
共 50 条
  • [21] Power-law bounds for critical long-range percolation below the upper-critical dimension
    Tom Hutchcroft
    Probability Theory and Related Fields, 2021, 181 : 533 - 570
  • [22] Cumulative merging percolation: A long-range percolation process in networks
    Cirigliano, Lorenzo
    Cimini, Giulio
    Pastor-Satorras, Romualdo
    Castellano, Claudio
    PHYSICAL REVIEW E, 2022, 105 (05)
  • [23] Percolation in networks with long-range connections
    Moukarzel, Cristian F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 372 (02) : 340 - 345
  • [24] LONG-RANGE PERCOLATION IN ONE DIMENSION
    SPOUGE, JL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (11): : 2349 - 2350
  • [25] Long-range percolation mixing time
    Benjamini, Itai
    Berger, Noam
    Yadin, Ariel
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (04): : 487 - 494
  • [26] CORRELATED PERCOLATION WITH LONG-RANGE INTERACTIONS
    TADIC, B
    PIRC, R
    PHYSICAL REVIEW B, 1989, 39 (13) : 9531 - 9535
  • [27] Long-range percolation on the hierarchical lattice
    Koval, Vyacheslav
    Meester, Ronald
    Trapman, Pieter
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 21
  • [28] LONG-RANGE PERCOLATION IN ONE DIMENSION
    ZHANG, ZQ
    PU, FC
    LI, BZ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (03): : L85 - L90
  • [29] Contact process on a dynamical long range percolation
    Seiler, Marco
    Sturm, Anja
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [30] LONG-RANGE PERCOLATION IN ONE DIMENSION
    SCHULMAN, LS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (17): : L639 - L641