A new multi-objective optimization method for master production scheduling problems based on genetic algorithm

被引:15
|
作者
Soares, Marcio M. [2 ]
Vieira, Guilherme E. [1 ]
机构
[1] Pontificia Univ Catolica Parana, Parque Tecnol Ind Engn Dept, BR-80215901 Curitiba, Parana, Brazil
[2] IBRATEC Ind Brasileira Artefatos Tecn Ltda, Curitiba, Parana, Brazil
关键词
Master production scheduling; Genetic algorithms; Optimization; Design of experiments; MULTILEVEL; SOLVE;
D O I
10.1007/s00170-008-1481-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In an environment of global competition, the success of a manufacturing corporation is directly related to the optimization level of its processes in general, but, in particular, to how it plans and executes production. In this context, the master production schedule (MPS) is the key activity for success. In this paper, as in most industries worldwide, the creation of an MPS considers conflicting objectives, such as maximization of service levels, efficient use of resources, and minimization of inventory levels. Unfortunately, the complexity and effort demanded for the creation of a master plan grows rapidly as the production scenario increases, especially when resources are limited, which is the case for most industries. Due to such complexity, industries usually use simple heuristics implemented in spreadsheets that provide a quick plan, but can compromise efficiency and costs. Fortunately, researchers are often proposing new ideas to improve production planning, such as use of artificial intelligence-based heuristics. This work presents the development and use of genetic algorithm (GA) to MPS problems, something that does not seem to have been done so far. It proposes a new genetic algorithm structure, and describes the multi-objective fitness function used, the set of possible individual selection techniques, and the adjustment values for the crossover and mutation operators. The GA developed was applied to two manufacturing scenarios and the most important parameters for the configuration of the GA were identified. This research shows that the use of genetic algorithms is a viable technique for MPS problems; however, its applicability is still heavily dependent on the size of the manufacturing scenario.
引用
收藏
页码:549 / 567
页数:19
相关论文
共 50 条
  • [1] A new multi-objective optimization method for master production scheduling problems based on genetic algorithm
    Marcio M. Soares
    Guilherme E. Vieira
    The International Journal of Advanced Manufacturing Technology, 2009, 41 : 549 - 567
  • [2] Micro Grid Scheduling Optimization Model Based on Multi-objective Genetic Algorithm
    Shen, Gang
    Zhuang, Jian
    Yu, Jiancheng
    Xu, Ke
    Gao, Yi
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 513 - 516
  • [3] A SIMPLIFIED MULTI-OBJECTIVE GENETIC ALGORITHM OPTIMIZATION MODEL FOR CANAL SCHEDULING
    Peng, S. Z.
    Wang, Y.
    Khan, S.
    Rana, T.
    Luo, Y. F.
    IRRIGATION AND DRAINAGE, 2012, 61 (03) : 294 - 305
  • [4] Optimization of Biodiesel Production Using Multi-Objective Genetic Algorithm
    Goharimanesh, Masoud
    Lashkaripour, Ali
    Akbari, Aliakbar
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2016, 19 (02): : 117 - 124
  • [5] Approaches based on fuzzy genetic algorithm for multi-objective programming problems
    Hou, JR
    Huang, PQ
    Zhao, XF
    PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2003, : 633 - 637
  • [6] An Improved Multi-Objective Genetic Algorithm for Solving Multi-objective Problems
    Hsieh, Sheng-Ta
    Chiu, Shih-Yuan
    Yen, Shi-Jim
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (05): : 1933 - 1941
  • [7] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [8] BSTBGA: A hybrid genetic algorithm for constrained multi-objective optimization problems
    Li, Xiang
    Du, Gang
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (01) : 282 - 302
  • [9] A multi-objective fuzzy genetic algorithm for job-shop scheduling problems
    Xing, Y. J.
    Wang, Z. Q.
    Sun, J.
    Meng, J. J.
    2006 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, PTS 1 AND 2, PROCEEDINGS, 2006, : 398 - 401
  • [10] Grasshopper optimization algorithm for multi-objective optimization problems
    Mirjalili, Seyedeh Zahra
    Mirjalili, Seyedali
    Saremi, Shahrzad
    Faris, Hossam
    Aljarah, Ibrahim
    APPLIED INTELLIGENCE, 2018, 48 (04) : 805 - 820