Conformal iterated function systems with applications to the geometry of continued fractions

被引:97
作者
Mauldin, RD [1 ]
Urbanski, M [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
iterated function systems; continued fractions; Hausdorff dimension; Hausdorff and packing measures; arithmetic densities;
D O I
10.1090/S0002-9947-99-02268-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we obtain some results about general conformal iterated function systems. We obtain a simple characterization of the packing dimension of the limit set of such systems and introduce some special systems which exhibit some interesting behavior. We then apply these results to the set of values of real continued fractions with restricted entries. We pay special attention to the Hausdorff and packing measures of these sets. We also give direct interpretations of these measure theoretic results in terms of the arithmetic density properties of the set of allowed entries.
引用
收藏
页码:4995 / 5025
页数:31
相关论文
共 50 条
  • [41] MOBIUS ITERATED FUNCTION SYSTEMS
    Vince, Andrew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (01) : 491 - 509
  • [42] ATTRACTORS OF ITERATED FUNCTION SYSTEMS
    DUVALL, PF
    HUSCH, LS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (01) : 279 - 284
  • [43] Ends of iterated function systems
    Conner, Gregory R.
    Hojka, Wolfram
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 1073 - 1083
  • [44] Tiling iterated function systems
    Barnsley, Louisa F.
    Barnsley, Michael F.
    Vince, Andrew
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [45] Wavelets for iterated function systems
    Bohnstengel, Jana
    Kesseboehmer, Marc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (03) : 583 - 601
  • [46] ON ITERATED FUNCTION SYSTEMS WITH PLACE-DEPENDENT PROBABILITIES
    Barany, Balazs
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 419 - 432
  • [47] The growth speed of digits in infinite iterated function systems
    Cao, Chun-Yun
    Wang, Bao-Wei
    Wu, Jun
    STUDIA MATHEMATICA, 2013, 217 (02) : 139 - 158
  • [48] INCREASING DIGIT SUBSYSTEMS OF INFINITE ITERATED FUNCTION SYSTEMS
    Jordan, Thomas
    Rams, Michal
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1267 - 1279
  • [49] Finer fractal geometry for analytic families of conformal dynamical systems
    Skorulski, Bartlomiej
    Urbanski, Mariusz
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (03): : 369 - 398
  • [50] Accumulation points of iterated function systems
    Keen, L
    Lakic, N
    COMPLEX DYNAMICS, 2006, 396 : 101 - +