Tsallis entropy in scale-spaces

被引:8
|
作者
Tanaka, M [1 ]
Watanabe, T [1 ]
Mishima, T [1 ]
机构
[1] Electrotech Lab, Tsukuba, Ibaraki 3058568, Japan
来源
VISION GEOMETRY VIII | 1999年 / 3811卷
关键词
scale-space; Renyi entropy; Tsallis entropy; scale selection;
D O I
10.1117/12.364102
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently an interesting image analysis by scale-space method is given by Sporring and Weickert.(20) They considered Renyi entropy at each scale to estimate the extents of the lighter pattern and the darker pattern in a given image. On the other hand, there is another generalized entropy such as Tsallis entropy, which has a physical meaning like Boltzmann entropy and is also famous for its usefulness in physics. In this paper, after giving a brief review of Tsallis entropy, we adopt Tsallis entropy as an information measure at each level for the scale-space method to elucidate what the difference between Renyi entropy and Tsallis entropy causes in result. It is also shown that Tsallis entropy is a more natural information measure than Renyi entropy.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [1] Information measures in scale-spaces
    Sporring, J
    Weickert, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (03) : 1051 - 1058
  • [2] Sparsification Scale-Spaces
    Cardenas, Marcelo
    Peter, Pascal
    Weickert, Joachim
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2019, 2019, 11603 : 303 - 314
  • [3] Algebraic framework for linear and morphological scale-spaces
    Heijmans, HJAM
    van den Boomgaard, R
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2002, 13 (1-2) : 269 - 301
  • [4] Morphological scale-spaces, scale-invariance, and lie groups
    Heijmans, HJAM
    MATHEMATICAL MORPHOLOGY, PROCEEDINGS, 2002, : 253 - 263
  • [5] Scale-spaces for generalization of 3D buildings
    Mayer, H
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2005, 19 (8-9) : 975 - 997
  • [6] Morphological Counterparts of Linear Shift-Invariant Scale-Spaces
    Martin Schmidt
    Joachim Weickert
    Journal of Mathematical Imaging and Vision, 2016, 56 : 352 - 366
  • [7] Tsallis entropy induced metrics and CAT(k) spaces
    Kalogeropoulos, Nikos
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (12) : 3435 - 3445
  • [8] Morphological Counterparts of Linear Shift-Invariant Scale-Spaces
    Schmidt, Martin
    Weickert, Joachim
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2016, 56 (02) : 352 - 366
  • [9] On uniqueness theorems for Tsallis entropy and Tsallis relative entropy
    Furuichi, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) : 3638 - 3645
  • [10] Projections maximizing Tsallis entropy
    Harremoes, Peter
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 90 - 95