Hybrid Neurofuzzy Computing With Nullneurons

被引:11
作者
Hell, Michel [1 ]
Costa, Pyramo, Jr. [2 ]
Gomide, Fernando [1 ]
机构
[1] Univ Estadual Campinas, UNICAMP, Fac Elect & Comp Engn, Dept Comp Engn & Automat, BR-13083960 Campinas, SP, Brazil
[2] Pontif Univ Catolica Minas Gerais, PPGEE PUC MG, Grad Program Elect Engn, BR-30535610 Horizonte, MG, Brazil
来源
2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8 | 2008年
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1109/IJCNN.2008.4634321
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address a new type of elementary neurofuzzy unit called nullneuron. A nullneuron is a generalization of and/or neurons based on the concept of nullnorm, a category of fuzzy sets operators that generalizes triangular norms and conorms. The nullneuron model is parametrized by an element u, called the absorbing element If the absorbing element u = 0, then the nullneuron becomes a and neuron and if u = 1, then the nullneuron becomes a dual or neuron. Also, we introduce a new learning scheme for hybrid neurofuzzy networks based on nullneurons using reinforcement learning. This learning scheme adjusts the weights associated with the individual inputs of the nullneurons, and learns the role of the nullneuron in the network (and or or) by individually adjusting the parameter u of each nullneuron. Nullneuron-based neural networks and the associated learning scheme is more general than similar neurofuzzy networks because they allow different triangular norms in the same network structure. Experimental results show that nullneuron-based networks provide accurate results with low computational effort.
引用
收藏
页码:3653 / +
页数:2
相关论文
共 24 条
[1]  
BARTO AG, 1987, P IEEE 1 ANN C NEUR, P629
[2]  
Box G. E., 1976, TIME SERIES ANAL FOR
[3]   The functional equations of Frank and Alsina for uninorms and nullnorms [J].
Calvo, T ;
De Baets, B ;
Fodor, J .
FUZZY SETS AND SYSTEMS, 2001, 120 (03) :385-394
[4]  
CAMINHAS W, 1999, J ADV COMPUTATIONAL, V3, P151
[5]   A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling [J].
Delgado, M ;
GomezSkarmeta, AF ;
Martin, F .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (02) :223-233
[6]   A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems [J].
Farag, WA ;
Quintana, VH ;
Lambert-Torres, G .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05) :756-767
[7]   Learning algorithms for a class of neurofuzzy network and application [J].
Figueiredo, M ;
Ballini, R ;
Soares, S ;
Andrade, M ;
Gomide, F .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2004, 34 (03) :293-301
[8]   Linguistic information feedforward-based dynamical fuzzy systems [J].
Gao, Xiao-Zhi ;
Ovaska, Seppo J. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2006, 36 (04) :453-463
[9]  
GOMIDE F, 2007, WILEY INTERSCIENCE
[10]  
HELL M, 2007, P ANN M N AM FUZZ IN, P331