Is Cell Rheology Governed by Nonequilibrium-to-Equilibrium Transition of Noncovalent Bonds?

被引:29
作者
Chowdhury, Farhan [1 ]
Na, Sungsoo [1 ]
Collin, Olivier [1 ]
Tay, Bernard [1 ]
Li, Fang [1 ]
Tanaka, Testuya [2 ]
Leckband, Deborah E. [3 ,4 ]
Wang, Ning [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1529/biophysj.108.139832
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A living cell deforms or flows in response to mechanical stresses. A recent report shows that dynamic mechanics of living cells depends on the timescale of mechanical loading, in contrast to the prevailing view of some authors that cell rheology is timescale-free. Yet the molecular basis that governs this timescale-dependent behavior is elusive. Using molecular dynamics simulations of protein-protein noncovalent interactions, we show that multipower laws originate from a nonequilibrium-to-equilibrium transition: when the loading rate is faster than the transition rate, the power-law exponent alpha(1) is weak; when the loading rate is slower than the transition rate, the exponent alpha(2) is strong. The model predictions are confirmed in both embryonic stem cells and differentiated cells. Embryonic stem cells are less stiff, more fluidlike, and exhibit greater alpha(1) than their differentiated counterparts. By introducing a near-equilibrium frequency f(eq), we show that all data collapse into two power laws separated by f/f(eq), which is unity. These findings suggest that the timescale-dependent rheology in living cells originates from the nonequilibrium-to-equilibrium transition of the dynamic response of distinct, force-driven molecular processes.
引用
收藏
页码:5719 / 5727
页数:9
相关论文
共 47 条
  • [1] Microrheology of human lung epithelial cells measured by atomic force microscopy
    Alcaraz, J
    Buscemi, L
    Grabulosa, M
    Trepat, X
    Fabry, B
    Farré, R
    Navajas, D
    [J]. BIOPHYSICAL JOURNAL, 2003, 84 (03) : 2071 - 2079
  • [2] Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines
    Auerbach, W
    Dunmore, JH
    Fairchild-Huntress, V
    Fang, Q
    Auerbach, AB
    Huszar, D
    Joyner, AL
    [J]. BIOTECHNIQUES, 2000, 29 (05) : 1024 - +
  • [3] EMBRYONIC STEM-CELLS EXPRESS NEURONAL PROPERTIES IN-VITRO
    BAIN, G
    KITCHENS, D
    YAO, M
    HUETTNER, JE
    GOTTLIEB, DI
    [J]. DEVELOPMENTAL BIOLOGY, 1995, 168 (02) : 342 - 357
  • [4] Power laws in microrheology experiments on living cells:: Comparative analysis and modeling
    Balland, Martial
    Desprat, Nicolas
    Icard, Delphine
    Fereol, Sophie
    Asnacios, Atef
    Browaeys, Julien
    Henon, Sylvie
    Gallet, Francois
    [J]. PHYSICAL REVIEW E, 2006, 74 (02):
  • [5] Single-molecule force spectroscopy reveals signatures of glassy dynamics in the energy landscape of ubiquitin
    Brujic, J
    Hermans, RI
    Walther, KA
    Fernandez, JM
    [J]. NATURE PHYSICS, 2006, 2 (04) : 282 - 286
  • [6] Cytoskeletal remodelling and slow dynamics in the living cell
    Bursac, P
    Lenormand, G
    Fabry, B
    Oliver, M
    Weitz, DA
    Viasnoff, V
    Butler, JP
    Fredberg, JJ
    [J]. NATURE MATERIALS, 2005, 4 (07) : 557 - 561
  • [7] Fast and slow dynamics of the cytoskeleton
    Deng, Linhong
    Trepat, Xavier
    Butler, James P.
    Millet, Emil
    Morgan, Kathleen G.
    Weitz, David A.
    Fredberg, Jeffrey J.
    [J]. NATURE MATERIALS, 2006, 5 (08) : 636 - 640
  • [8] Creep function of a single living cell
    Desprat, N
    Richert, A
    Simeon, J
    Asnacios, A
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (03) : 2224 - 2233
  • [9] EIF J, 2007, SCIENCE, V316, P1191
  • [10] Forces and bond dynamics in cell adhesion
    Evans, Evan A.
    Calderwood, David A.
    [J]. SCIENCE, 2007, 316 (5828) : 1148 - 1153