Barrier paradox in the Klein zone

被引:33
作者
De Leo, S
Rotelli, PP
机构
[1] Univ Estadual Campinas, Dept Appl Math, BR-13083970 Campinas, SP, Brazil
[2] Univ Lecce, Dept Phys, INFN, I-73100 Lecce, Italy
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevA.73.042107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the solutions for a one-dimensional electrostatic potential in the Dirac equation when the incoming wave packet exhibits the Klein paradox (pair production). With a barrier potential we demonstrate the existence of multiple reflections (and transmissions). The antiparticle solutions which are necessarily localized within the barrier region create new pairs with each reflection at the potential walls. Consequently we encounter a new "paradox" for the barrier because successive outgoing wave amplitudes grow geometrically.
引用
收藏
页数:7
相关论文
共 18 条
  • [1] MULTIPLE-SCATTERING APPROACH TO ONE-DIMENSIONAL POTENTIAL PROBLEMS
    ANDERSON, A
    [J]. AMERICAN JOURNAL OF PHYSICS, 1989, 57 (03) : 230 - 235
  • [2] [Anonymous], 1977, Quantum mechanics
  • [3] Above barrier potential diffusion
    Bernardini, AE
    De Leo, S
    Rotelli, PP
    [J]. MODERN PHYSICS LETTERS A, 2004, 19 (36) : 2717 - 2725
  • [4] Born M, 1989, PRINCIPLES OPTICS
  • [5] Goodman J. W., 1968, INTRO FOURIER OPTICS, P129
  • [6] Greiner W., 1985, Quantum Electrodynamics of Strong Fields
  • [7] Gross F., 1993, RELATIVISTIC QUANTUM
  • [8] KLEIN PARADOX AND ITS RESOLUTION
    HANSEN, A
    RAVNDAL, F
    [J]. PHYSICA SCRIPTA, 1981, 23 (06): : 1036 - 1042
  • [9] Klein's paradox
    Holstein, BR
    [J]. AMERICAN JOURNAL OF PHYSICS, 1998, 66 (06) : 507 - 512
  • [10] Itzykson C., 1985, QUANTUM FIELD THEORY