Differential entropy and dynamics of uncertainty

被引:51
作者
Garbaczewski, P [1 ]
机构
[1] Univ Zielona Gora, Inst Phys, PL-65516 Zielona Gora, Poland
关键词
entropy functionals; entropy methods; Shannon entropy; Fisher information; dynamics of densities; entropy dynamics; Smoluchowski process; quantum evolution; information localization; uncertainty;
D O I
10.1007/s10955-006-9058-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the functioning of Gibbs-type entropy functionals in the time domain, with emphasis on Shannon and Kullback-Leibler entropies of time-dependent continuous probability distributions. The Shannon entropy validity is extended to probability distributions inferred from L-2(R-n) quantum wave packets. In contrast to the von Neumann entropy which simply vanishes on pure states, the differential entropy quantifies the degree of probability (de)localization and its time development. The associated dynamics of the Fisher information functional quantifies nontrivial power transfer processes in the mean, both in dissipative and quantum mechanical cases.
引用
收藏
页码:315 / 355
页数:41
相关论文
共 105 条
[1]  
ADAMI C, 2004, ARXIVQUANTPH040505
[2]  
Alicki R., 2001, QUANTUM DYNAMICAL SY
[3]   Entropy and time [J].
Ambegaokar, V ;
Clerk, AA .
AMERICAN JOURNAL OF PHYSICS, 1999, 67 (12) :1068-1073
[4]  
[Anonymous], 1999, Mathematical Methods of Statistics
[5]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[6]   Noise properties of stochastic processes and entropy production [J].
Bag, BC ;
Banik, SK ;
Ray, DS .
PHYSICAL REVIEW E, 2001, 64 (02) :7
[7]   Upper bound for the time derivative of entropy for nonequilibrium stochastic processes [J].
Bag, Bidhan Chandra .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046118
[8]   RANDOM MATRICES AND INFORMATION THEORY [J].
BALIAN, R .
NUOVO CIMENTO B, 1968, 57 (01) :183-&
[9]   ENTROPY AND THE CENTRAL-LIMIT-THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1986, 14 (01) :336-342
[10]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182