Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors

被引:117
作者
Ding, Ke [1 ]
Jing, Lihong [1 ]
Liu, Chunyan [1 ]
Hou, Yi [1 ]
Gao, Mingyuan [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
关键词
Cd-free CuInS2@ZnS:Mn QDs; Cytotoxicity; Fluorescence/MR dual-modality probe; Tumor imaging; In vivo; CORE/SHELL NANOCRYSTALS; OPTICAL-PROPERTIES; CONTRAST AGENT; LUMINESCENT; FLUORESCENT; PHOTOLUMINESCENCE; NANOPARTICLES; CYTOTOXICITY; INTEGRATION; PERFORMANCE;
D O I
10.1016/j.biomaterials.2013.10.078
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnetically engineered Cd-free CuInS2@ZnS:Mn quantum dots (QDs) were designed, synthesized, and evaluated as potential dual-modality probes for fluorescence and magnetic resonance imaging (MRI) of tumors in vivo. The synthesis of Mn-doped core shell structured CuInS2@ZnS mainly comprised three steps, i.e., the preparation of fluorescent CuInS2 seeds, the particle surface coating of ZnS, and the Mndoping of the ZnS shells. Systematic spectroscopy studies were carried out to illustrate the impacts of ZnS coating and the following Mn-doping on the optical properties of the QDs. In combination with conventional fluorescence, fluorescence excitation, and time-resolved fluorescence measurements, the structure of CuInS2@ZnS:Mn QDs prepared under optimized conditions presented a Zn gradient CuInS2 core and a ZnS outer shell, while Mn ions were mainly located in the ZnS shell, which well balanced the optical and magnetic properties of the resultant QDs. For the following in vivo imaging experiments, the hydrophobic CuInS2@ZnS:Mn QDs were transferred into water upon ligand exchange reactions by replacing the 1-dodecanethiol ligand with dihydrolipoic acid-poly(ethylene glycol) (DHLA-PEG) ligand. The MTT assays based on HeLa cells were carried out to evaluate the cytotoxicity of the current Cd-free CuInS2@ZnS:Mn QDs for comparing with that of water soluble CdTe QDs. Further in vivo fluorescence and MR imaging experiments suggested that the PEGylated CuInS2@ZnS:Mn QDs could well target both subcutaneous and intraperitoneal tumors in vivo. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1608 / 1617
页数:10
相关论文
共 75 条
[1]   Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots [J].
Beaulac, Remi ;
Archer, Paul I. ;
Liu, Xinyu ;
Lee, Sanghoon ;
Salley, G. Mackay ;
Dobrowolska, Margaret ;
Furdyna, Jacek K. ;
Gamelin, Daniel R. .
NANO LETTERS, 2008, 8 (04) :1197-1201
[2]   EPR spectra of Mn2+-doped ZnS quantum dots [J].
Beermann, PAG ;
McGarvey, BR ;
Muralidharan, S ;
Sung, RCW .
CHEMISTRY OF MATERIALS, 2004, 16 (05) :915-918
[3]   OPTICAL-PROPERTIES OF MANGANESE-DOPED NANOCRYSTALS OF ZNS [J].
BHARGAVA, RN ;
GALLAGHER, D ;
HONG, X ;
NURMIKKO, A .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :416-419
[4]   Optical and magnetic properties of manganese-incorporated zinc sulfide nanorods synthesized by a solvothermal process [J].
Biswas, S ;
Kar, S ;
Chaudhuri, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (37) :17526-17530
[5]   Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+.: 1.: Surface passivation and Mn2+ concentration [J].
Bol, AA ;
Meijerink, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (42) :10197-10202
[6]   Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors [J].
Castro, SL ;
Bailey, SG ;
Raffaelle, RP ;
Banger, KK ;
Hepp, AF .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3142-3147
[7]  
Chen C, 2012, NANOMEDICINE-UK, V7, P411, DOI [10.2217/NNM.12.9, 10.2217/nnm.12.9]
[8]   The integration of positron emission tomography with magnetic resonance imaging [J].
Cherry, Simon R. ;
Louie, Angelique Y. ;
Jacobs, Russell E. .
PROCEEDINGS OF THE IEEE, 2008, 96 (03) :416-438
[9]   Renal clearance of quantum dots [J].
Choi, Hak Soo ;
Liu, Wenhao ;
Misra, Preeti ;
Tanaka, Eiichi ;
Zimmer, John P. ;
Ipe, Binil Itty ;
Bawendi, Moungi G. ;
Frangioni, John V. .
NATURE BIOTECHNOLOGY, 2007, 25 (10) :1165-1170
[10]   Nanocrystal Core High-Density Lipoproteins: A Multimodality Contrast Agent Platform [J].
Cormode, David P. ;
Skajaa, Torjus ;
van Schooneveld, Matti M. ;
Koole, Rolf ;
Jarzyna, Peter ;
Lobatto, Mark E. ;
Calcagno, Claudia ;
Barazza, Alessandra ;
Gordon, Ronald E. ;
Zanzonico, Pat ;
Fisher, Edward A. ;
Fayad, Zahi A. ;
Mulder, Willem J. M. .
NANO LETTERS, 2008, 8 (11) :3715-3723