One-relator Kahler groups

被引:4
作者
Biswas, Indranil [1 ]
Mj, Mahan
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
CONVERGENCE GROUPS; 3-MANIFOLDS;
D O I
10.2140/gt.2012.16.2171
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a one-relator group G is Khler if and only if either G is finite cyclic or G is isomorphic to the fundamental group of a compact orbifold Riemann surface of genus g > 0 with at most one cone point of order n : < a(1), b(1), . . . , a(g), b(g) vertical bar ( Pi(g)(i = 1) [a(i),b(i)])(n)>.
引用
收藏
页码:2171 / 2186
页数:16
相关论文
共 28 条
[1]   On the Malcev completion of Kahler groups [J].
Amoros, J .
COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (02) :192-212
[2]  
Amoros J., 1996, Math. Surveys Monogr., V44
[3]  
[Anonymous], 1991, J AM MATH SOC, V4, P87
[4]  
Arapura D., 1995, Math. Sci. Res. Inst. Publ, V28, P1
[5]   GROUPS WITH HOMOLOGICAL DUALITY GENERALIZING POINCARE DUALITY [J].
BIERI, R ;
ECKMANN, B .
INVENTIONES MATHEMATICAE, 1973, 20 (02) :103-124
[6]  
Bieri R., 1976, J PURE APPL ALGEBRA, V7, P35
[7]  
Biswas I, COMMUN CONT IN PRESS
[8]  
Brown K., 1982, Graduate Texts in Mathematics, V87, DOI DOI 10.1007/978-1-4684-9327-6
[9]   CONVERGENCE GROUPS AND SEIFERT FIBERED 3-MANIFOLDS [J].
CASSON, A ;
JUNGREIS, D .
INVENTIONES MATHEMATICAE, 1994, 118 (03) :441-456
[10]   Some remarks on the universal cover of an open K3 surface [J].
Catanese, F ;
Keum, J ;
Oguiso, K .
MATHEMATISCHE ANNALEN, 2003, 325 (02) :279-286