NON-TRIVIAL 2+1-DIMENSIONAL GRAVITY

被引:0
作者
Grigore, D. R. [1 ]
Scharf, G. [2 ]
机构
[1] Natl Inst Phys & Nucl Engn Horia Hulubei, Dept Theoret Phys, RO-077125 Magurele, Romania
[2] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland
来源
ROMANIAN JOURNAL OF PHYSICS | 2013年 / 58卷 / 5-6期
关键词
perturbation theory; standard model; quantum gravity; MASSIVE GRAVITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze 2+1-dimensional gravity in the framework of quantum gauge theory. We find that Einstein gravity has a trivial physical subspace which reflects the fact that the classical solution in empty space is flat. Therefore we study massive gravity which is not trivial. In the limit of vanishing graviton mass we obtain a non-trivial massless theory different from Einstein gravity. We derive the interaction from descent equations and obtain the cosmological topologically massive gravity. However, in addition to Einstein and Chem-Simons coupling we need coupling to fermionic ghost and antighost fields and to a vector-graviton field with the same mass as the graviton.
引用
收藏
页码:583 / 598
页数:16
相关论文
共 17 条
[1]   Massive Gravity in Three Dimensions [J].
Bergshoeff, Eric A. ;
Hohm, Olaf ;
Townsend, Paul K. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[2]  
Bognar I., 1974, INDEFINITE INNER PRO
[3]   Cosmological topologically massive gravitons and photons [J].
Carlip, S. ;
Deser, S. ;
Waldron, A. ;
Wise, D. K. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (07)
[4]   3-DIMENSIONAL EINSTEIN GRAVITY - DYNAMICS OF FLAT SPACE [J].
DESER, S ;
JACKIW, R ;
THOOFT, G .
ANNALS OF PHYSICS, 1984, 152 (01) :220-235
[5]   Ghost-Free, Finite, Fourth-Order D=3 Gravity [J].
Deser, S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (10)
[6]   EINSTEIN THEORY IN A 3-DIMENSIONAL SPACE-TIME [J].
GIDDINGS, S ;
ABBOTT, J ;
KUCHAR, K .
GENERAL RELATIVITY AND GRAVITATION, 1984, 16 (08) :751-775
[7]   Dispersion relations for Bernstein waves in a relativistic pair plasma [J].
Gill, Ramandeep ;
Heyl, Jeremy S. .
PHYSICAL REVIEW E, 2009, 80 (03)
[8]  
Grigore DR, 2010, ROM J PHYS, V55, P386
[9]   Massive gravity from descent equations [J].
Grigore, D. R. ;
Scharf, G. .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (22)
[10]   Massive gravity as a quantum gauge theory [J].
Grigore, DR ;
Scharf, G .
GENERAL RELATIVITY AND GRAVITATION, 2005, 37 (06) :1075-1096