KOLMOGOROV-SINAI ENTROPY VIA SEPARATION PROPERTIES OF ORDER-GENERATED σ-ALGEBRAS

被引:12
作者
Antoniouk, Alexandra [1 ]
Keller, Karsten [2 ]
Maksymenko, Sergiy [1 ]
机构
[1] Inst Math NAS Ukraine, UA-01601 Kiev, Ukraine
[2] Med Univ Lubeck, Inst Math, D-23562 Lubeck, Germany
关键词
Kolmogorov-Sinai entropy; permutation entropy; multijets transversality theorem; residuality; prevalence;
D O I
10.3934/dcds.2014.34.1793
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper, K. Keller has given a characterization of the Kolmogorov-Sinai entropy of a discrete-time measure-preserving dynamical system on the base of an increasing sequence of special partitions. These partitions are constructed from order relations obtained via a given real-valued random vector, which can be interpreted as a collection of observables on the system and is assumed to separate points of it. In the present paper we relax the separation condition in order to generalize the given characterization of Kolmogorov-Sinai entropy, providing a statement on equivalence of sigma-algebras. On its base we show that in the case that a dynamical system is living on an m-dimensional smooth manifold and the underlying measure is Lebesgue absolute continuous, the set of smooth random vectors of dimension n > m with given characterization of Kolmogorov-Sinai entropy is large in a certain sense.
引用
收藏
页码:1793 / 1809
页数:17
相关论文
共 18 条
[1]  
Amigo JM, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-04084-9
[2]   The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems [J].
Amigó, JM ;
Kennel, MB ;
Kocarev, L .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 210 (1-2) :77-95
[3]   The equality of Kolmogorov-Sinai entropy and metric permutation entropy generalized [J].
Amigo, Jose M. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (07) :789-793
[4]  
[Anonymous], 1976, DIFFERENTIAL TOPOLOG
[5]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[6]   Entropy of interval maps via permutations [J].
Bandt, C ;
Keller, G ;
Pompe, B .
NONLINEARITY, 2002, 15 (05) :1595-1602
[7]  
Golubitsky M., 1973, Stable mappings and their singularities, V14
[8]  
Guillemin V., 2010, DIFFERENTIAL TOPOLOG, V370
[9]   PREVALENCE - A TRANSLATION-INVARIANT ALMOST EVERY ON INFINITE-DIMENSIONAL SPACES [J].
HUNT, BR ;
SAUER, T ;
YORKE, JA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (02) :217-238
[10]  
Kechris A. S., 1995, CLASSICAL DESCRIPTIV, V156