Survey of Global Genetic Diversity Within the Drosophila Immune System

被引:24
作者
Early, Angela M. [1 ,2 ]
Arguello, J. Roman [2 ,3 ]
Cardoso-Moreira, Margarida [2 ,4 ]
Gottipati, Srikanth [2 ,5 ]
Grenier, Jennifer K. [2 ]
Clark, Andrew G. [1 ,2 ]
机构
[1] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[3] Univ Lausanne, Ctr Integrat Genom, CH-1015 Lausanne, Switzerland
[4] Heidelberg Univ, Zentrum Mol Biol, D-69120 Heidelberg, Germany
[5] Otsuka Pharmaceutical Dev & Commercialization Inc, Translat Med & Think Team, Princeton, NJ 08540 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
evolution; local adaptation; population genetics; immunity; Drosophila melanogaster; ADAPTIVE EVOLUTION; POSITIVE SELECTION; LOCAL ADAPTATION; INNATE IMMUNITY; ANTIMICROBIAL PEPTIDE; PURIFYING SELECTION; NATURAL-SELECTION; RAPID EVOLUTION; POPULATION; MELANOGASTER;
D O I
10.1534/genetics.116.195016
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Numerous studies across a wide range of taxa have demonstrated that immune genes are routinely among the most rapidly evolving genes in the genome. This observation, however, does not address what proportion of immune genes undergo strong selection during adaptation to novel environments. Here, we determine the extent of very recent divergence in genes with immune function across five populations of Drosophila melanogaster and find that immune genes do not show an overall trend of recent rapid adaptation. Our population-based approach uses a set of carefully matched control genes to account for the effects of demography and local recombination rate, allowing us to identify whether specific immune functions are putative targets of strong selection. We find evidence that viral-defense genes are rapidly evolving in Drosophila at multiple timescales. Local adaptation to bacteria and fungi is less extreme and primarily occurs through changes in recognition and effector genes rather than large-scale changes to the regulation of the immune response. Surprisingly, genes in the Toll pathway, which show a high rate of adaptive substitution between the D. melanogaster and D. simulans lineages, show little population differentiation. Quantifying the flies for resistance to a generalist Gram-positive bacterial pathogen, we found that this genetic pattern of low population differentiation was recapitulated at the phenotypic level. In sum, our results highlight the complexity of immune evolution and suggest that Drosophila immune genes do not follow a uniform trajectory of strong directional selection as flies encounter new environments.
引用
收藏
页码:353 / +
页数:27
相关论文
共 50 条
  • [21] Extensive local adaptation within the chemosensory system following Drosophila melanogaster's global expansion
    Arguello, J. Roman
    Cardoso-Moreira, Margarida
    Grenier, Jennifer K.
    Gottipati, Srikanth
    Clark, Andrew G.
    Benton, Richard
    NATURE COMMUNICATIONS, 2016, 7
  • [22] Utilizing the genetic diversity within rice cultivars
    Belefant-Miller, Helen
    Miller, Gordon H.
    Moldenhauer, Karen A. K.
    PLANTA, 2012, 235 (03) : 641 - 647
  • [23] Conflict resolution within the organism: the role of the Immune System
    Cadavid, Luis F.
    ACTA BIOLOGICA COLOMBIANA, 2016, 21 (01): : 287 - 295
  • [24] A conditional female lethal system for genetic suppression of the global fruit crop pest Drosophila suzukii
    Li, Fang
    Yamamoto, Akihiko
    Belikoff, Esther J.
    Berger, Amy
    Griffith, Emily H.
    Scott, Maxwell J.
    PEST MANAGEMENT SCIENCE, 2021, 77 (11) : 4915 - 4922
  • [25] The prophenoloxidase system in Drosophila participates in the anti-nematode immune response
    Cooper, Dustin
    Wuebbolt, Caitlin
    Heryanto, Christa
    Eleftherianos, Ioannis
    MOLECULAR IMMUNOLOGY, 2019, 109 : 88 - 98
  • [26] Genomic diversity and genetic variation of Leishmania panamensis within its endemic range
    Llanes, Alejandro
    Cruz, Genesis
    Moran, Mitchelle
    Vega, Carlos
    Pineda, Vanessa J.
    Rios, Margarita
    Penagos, Homero
    Suarez, Jose A.
    Saldana, Azael
    Lleonart, Ricardo
    Restrepo, Carlos M.
    INFECTION GENETICS AND EVOLUTION, 2022, 103
  • [27] The Genetic Basis of Natural Variation in Drosophila melanogaster Immune Defense against Enterococcus faecalis
    Chapman, Joanne R.
    Dowell, Maureen A.
    Chan, Rosanna
    Unckless, Robert L.
    GENES, 2020, 11 (02)
  • [28] Genetic diversity within and genetic differentiation between blooms of a microalgal species
    Lebret, Karen
    Kritzberg, Emma S.
    Figueroa, Rosa
    Rengefors, Karin
    ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (09) : 2395 - 2404
  • [29] Comprehensive Survey of Genetic Diversity in Chloroplast Genomes and 45S nrDNAs within Panax ginseng Species
    Kim, Kyunghee
    Lee, Sang-Choon
    Lee, Junki
    Lee, Hyun Oh
    Joh, Ho Jun
    Kim, Nam-Hoon
    Park, Hyun-Seung
    Yang, Tae-Jin
    PLOS ONE, 2015, 10 (06):
  • [30] Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition
    Hoban, Sean
    Archer, Frederick, I
    Bertola, Laura D.
    Bragg, Jason G.
    Breed, Martin F.
    Bruford, Michael W.
    Coleman, Melinda A.
    Ekblom, Robert
    Funk, W. Chris
    Grueber, Catherine E.
    Hand, Brian K.
    Jaffe, Rodolfo
    Jensen, Evelyn
    Johnson, Jeremy S.
    Kershaw, Francine
    Liggins, Libby
    MacDonald, Anna J.
    Mergeay, Joachim
    Miller, Joshua M.
    Muller-Karger, Frank
    O'Brien, David
    Paz-Vinas, Ivan
    Potter, Kevin M.
    Razgour, Orly
    Vernesi, Cristiano
    Hunter, Margaret E.
    BIOLOGICAL REVIEWS, 2022, 97 (04) : 1511 - 1538