A Novel Magnetic Fe3O4/SiO2 Core-Shell Nanorods for the Removal of Arsenic

被引:45
|
作者
Babu, C. M. [1 ]
Palanisamy, B. [1 ]
Sundaravel, B. [1 ]
Palanichamy, M. [1 ]
Murugesan, V. [1 ]
机构
[1] Anna Univ, Dept Chem, Madras 600025, Tamil Nadu, India
关键词
Nanorods; Magnetite; Characterisation; Ion-Exchange; Adsorption; Arsenic Removal; EFFICIENT REMOVAL; AQUEOUS-SOLUTION; MESOPOROUS SILICA; REVERSE-OSMOSIS; CHITOSAN BEADS; HEAVY-METALS; WATER; NANOPARTICLES; ADSORPTION; ADSORBENT;
D O I
10.1166/jnn.2013.7376
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel magnetic Fe3O4 core-shell nanorods (MCSNs) were synthesized by crosslinking amine functionalized Fe3O4@SiO2 core-shell nanoparticles with 1,2-bromochloroethane. These nanorods were then protonated with dilute HCl. The MCSNs nanorods were characterized using FT-IR, N-2 adsorption, VSM, SEM and TEM. The surface area of MCSNs nanorods was found to be 335 m(2)/g, which is higher than bare iron oxide and amine functionalized Fe3O4@SiO2. These nanorods were used simultaneously as ion-exchanger and adsorbent for the removal of arsenic from aqueous solution. It exhibited high adsorption capacity for arsenic. The kinetic study revealed that adsorption equilibrium attained within five min. The adsorbed arsenic on the nanorods were removed by magnetic separation and regenerated by acid treatment. The percentage removal of arsenic was more than 99%. Such nanorods can be used to remove not only arsenic but also other anions from potable water.
引用
收藏
页码:2517 / 2527
页数:11
相关论文
共 50 条
  • [41] Absorption performance of DMSA modified Fe3O4@SiO2 core/shell magnetic nanocomposite for Pb2+ removal
    Tian Qing-hua
    Wang Xiao-yang
    Mao Fang-fang
    Guo Xue-yi
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2018, 25 (04) : 709 - 718
  • [42] Novel magnetic core-shell Fe3O4 polypyrrole nanoparticles functionalized by peptides or albumin
    Nan, A.
    Turcu, R.
    Bratu, I.
    Leostean, C.
    Chauvet, O.
    Gautron, E.
    Liebscher, J.
    ARKIVOC, 2010, : 185 - 198
  • [43] C18-functionalized Fe3O4/SiO2 magnetic nano-sorbent for PAHs removal from water
    Pilnaj, Dominik
    Kuran, Pavel
    St'astny, Martin
    Pilaffova, Vera
    Janos, Pavel
    Kormunda, Martin
    Tokarsky, Jonas
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2021, 24
  • [44] Preparation of core-shell SiO2/Fe3O4 nanocomposite particles via sol-gel approach
    Liu Bing
    Wang De-Ping
    Huang Wen-Hai
    Yao Ai-Hua
    Koji, Ioku
    JOURNAL OF INORGANIC MATERIALS, 2008, 23 (01) : 33 - 38
  • [45] Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal
    Deng, Min
    Wu, Xiaodong
    Zhu, Aimei
    Zhang, Qiugen
    Liu, Qinglin
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2019, 237 : 63 - 74
  • [46] Preparation of amino-functionalized Fe3O4@mSiO2 core-shell magnetic nanoparticles and their application for aqueous Fe3+ removal
    Cheng Meng
    Wang Zhikun
    Lv Qiang
    Li Chunling
    Sun Shuangqing
    Hu Songqing
    JOURNAL OF HAZARDOUS MATERIALS, 2018, 341 : 198 - 206
  • [47] Fe3O4@ZIF-8@SiO2 Core-Shell Nanoparticles for the Removal of Pyrethroid Insecticides from Water
    Meng, Xiaohan
    Lv, Ze
    Shi, Liyin
    Jiang, Tianzhen
    Sun, Shaoyang
    Li, Yan
    Feng, Jianguo
    ACS APPLIED NANO MATERIALS, 2023, 6 (08) : 6581 - 6593
  • [48] Synthesis, characterization and photocatalytic efficiency of Fe3O4/SiO2/TiO2, SrFe12O19/SiO2/TiO2 and Fe3O4/SiO2/ZnO core/shell/shell nanostructures
    Bavarsiha, Fatemeh
    Dadashian, Saeideh
    Montazeri-Pour, Mehdi
    Ghasemy-Piranloo, Fardin
    Rajabi, Masoud
    PROCESSING AND APPLICATION OF CERAMICS, 2022, 16 (03) : 291 - 301
  • [49] Preparation of Fe3O4/SiO2 Core/Shell Nanoparticles with Ultrathin Silica Layer
    Jang, Eue-Soon
    JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE, 2012, 56 (04): : 478 - 483
  • [50] Comparison of core-shell and hollow Fe3O4/silica/chitosan magnetic nanoparticles in vanadium removal: experimental design and optimization analysis
    Salehi, Samira
    Hosseinifard, Mojtaba
    Meyabadi, Ali Mohammadi
    CELLULOSE, 2023, 30 (05) : 2969 - 2996