Lattice points in rotated convex domains

被引:6
作者
Guo, Jingwei [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Lattice points; convex domains; Fourier transform; Van der Corput's method; BODIES; DISCREPANCY; NUMBER;
D O I
10.4171/RMI/839
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If B subset of R-d (d >= 2) is a compact convex domain with a smooth boundary of finite type, we prove that for almost every rotation theta is an element of SO(d) the remainder of the lattice point problem, P-theta B (t) is of order O-theta(t(d-2+2/(d+1)-zeta d)) with a positive number zeta(d). Furthermore we extend the estimate of the above type, in the planar case, to general compact convex domains.
引用
收藏
页码:411 / 438
页数:28
相关论文
共 50 条
[41]   On the distribution of lattice points on spheres and level surfaces of polynomials [J].
Magyar, Akos .
JOURNAL OF NUMBER THEORY, 2007, 122 (01) :69-83
[42]   Asymptotic of eigenvalues and lattice points [J].
Pinasco, Juan Pablo .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) :1645-1650
[43]   Asymptotic of Eigenvalues and Lattice Points [J].
Juan Pablo Pinasco .
Acta Mathematica Sinica, 2006, 22 :1645-1650
[44]   ON COUNTING LATTICE POINTS IN POLYHEDRA [J].
DYER, M .
SIAM JOURNAL ON COMPUTING, 1991, 20 (04) :695-707
[45]   Asymptotic of Eigenvalues and Lattice Points [J].
Juan Pablo PINASCO .
ActaMathematicaSinica(EnglishSeries), 2006, 22 (06) :1645-1650
[46]   Visible lattice points in the sphere [J].
Chamizo, Fernando ;
Cristobal, Elena ;
Ubis, Adrian .
JOURNAL OF NUMBER THEORY, 2007, 126 (02) :200-211
[47]   LATTICE 3-POLYTOPES WITH FEW LATTICE POINTS [J].
Blanco, M. ;
Santos, F. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) :669-686
[48]   Projecting Lattice Polytopes Without Interior Lattice Points [J].
Nill, Benjamin ;
Ziegler, Guenter M. .
MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (03) :462-467
[49]   LATTICE 3-POLYTOPES WITH SIX LATTICE POINTS [J].
Blanco, M. ;
Santos, F. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) :687-717
[50]   Complementation in the Lattice of Locally Convex Topologies [J].
Richmond, Thomas A. .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02) :487-496