Lattice points in rotated convex domains

被引:6
作者
Guo, Jingwei [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Lattice points; convex domains; Fourier transform; Van der Corput's method; BODIES; DISCREPANCY; NUMBER;
D O I
10.4171/RMI/839
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If B subset of R-d (d >= 2) is a compact convex domain with a smooth boundary of finite type, we prove that for almost every rotation theta is an element of SO(d) the remainder of the lattice point problem, P-theta B (t) is of order O-theta(t(d-2+2/(d+1)-zeta d)) with a positive number zeta(d). Furthermore we extend the estimate of the above type, in the planar case, to general compact convex domains.
引用
收藏
页码:411 / 438
页数:28
相关论文
共 50 条
[31]   A GENERALIZATION OF THE BLASCHKE-LEBESGUE PROBLEM TO A KIND OF CONVEX DOMAINS [J].
Pan, Shengliang ;
Zhang, Deyan ;
Chao, Zhongjun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (05) :1587-1601
[32]   On the classification of convex lattice polytopes [J].
Liu, Heling ;
Zong, Chuanming .
ADVANCES IN GEOMETRY, 2011, 11 (04) :711-729
[33]   Longest convex lattice chains [J].
Barany, Imre ;
Roldan-Pensado, Edgardo .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (03) :367-376
[34]   Constructing lattice points for numerical integration by a reduced fast successive coordinate search algorithm [J].
Ebert, Adrian ;
Kritzer, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 351 :77-100
[35]   An Implementation of MacMahon's Partition Analysis in Ordering the Number of Lattice Points in Convex Polyhedron with Examples for Systolic Arrays [J].
Snopce, Halil ;
Spahiu, Ilir .
PROCEEDINGS OF THE ITI 2009 31ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2009, :659-+
[36]   WEIGHTED POINCARE INEQUALITIES ON CONVEX DOMAINS [J].
Chua, Seng-Kee ;
Wheeden, Richard L. .
MATHEMATICAL RESEARCH LETTERS, 2010, 17 (05) :993-1011
[37]   A note on the Poincare inequality for convex domains [J].
Bebendorf, M .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (04) :751-756
[38]   Estimates of invariant distances on “convex” domains [J].
Nikolai Nikolov .
Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 :1595-1605
[39]   Integer points close to convex hypersurfaces [J].
Lettington, M. C. .
ACTA ARITHMETICA, 2010, 141 (01) :73-101
[40]   Integer points close to convex surfaces [J].
Lettington, M. C. .
ACTA ARITHMETICA, 2009, 138 (01) :1-23