A harmonic balance approach to bifurcation analysis of limit cycles

被引:0
作者
Bonani, F [1 ]
Gilli, M [1 ]
机构
[1] Politecn Torino, Dipartimento Elettron, I-10129 Turin, Italy
来源
ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 6: CIRCUITS ANALYSIS, DESIGN METHODS, AND APPLICATIONS | 1999年
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work provides an application of the Harmonic Balance (HB) technique to the stability and bifurcation analysis of limit cycles of dynamical systems amenable to be expressed in Lur'e system form. A numerically efficient spectral approach is exploited to evaluate the system limit cycle with an arbitrary number of harmonic components, which are then explouted to perform a linearized, small-change stability analysis of the limit cycle itself. On the basis of a Mittag-Leffer expansion of the determinant of the infinite matrix representing the linearized system, the limit cycle Floquet multipliers (FM) are evaluated and exploited to perform the bifurcation analysis. As an example of application, parameter space bifurcation conditions for classical Chua's circuit are thoroughly examined.
引用
收藏
页码:298 / 301
页数:4
相关论文
共 50 条
[31]   Bifurcation of Limit Cycles and the Cusp of Order n [J].
Han Maoan (Department of Applied Mathematics .
Acta Mathematica Sinica,English Series, 1997, (01) :64-75
[32]   Bifurcation of Limit Cycles and the Cusp of Order n [J].
Han Maoan Department of Applied MathematicsShandong Mining InstituteTaian China .
Acta Mathematica Sinica(New Series), 1997, 13 (01) :64-75
[33]   A computation of bifurcation parameter values for limit cycles [J].
Ueta, T ;
Kawakami, H ;
Yoshinaga, T ;
Katsuta, Y .
ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, :801-804
[34]   Some bifurcation methods of finding limit cycles [J].
Han, MA ;
Zhang, TH .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (01) :67-77
[35]   Bifurcation of limit cycles in fluid film bearings [J].
Chouchane, Mnaouar ;
Amamou, Amira .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2011, 46 (09) :1258-1264
[36]   Simultaneous Bifurcation of Limit Cycles and Critical Periods [J].
Oliveira, Regilene D. S. ;
Sanchez-Sanchez, Ivan ;
Torregrosa, Joan .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (01)
[37]   ON BIFURCATION OF LIMIT-CYCLES FROM CENTERS [J].
CHICONE, C .
LECTURE NOTES IN MATHEMATICS, 1990, 1455 :20-43
[38]   A computation of bifurcation parameter values for limit cycles [J].
Ueta, T ;
Tsueike, M ;
Kawakami, H ;
Yoshinaga, T ;
Katsuta, Y .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1997, E80A (09) :1725-1728
[39]   BIFURCATION OF LIMIT CYCLES FOR CUBIC REVERSIBLE SYSTEMS [J].
Shao, Yi ;
Wu, Kuilin .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
[40]   LIMIT CYCLES BIFURCATION FOR A CLASS OF DEGENERATE SINGULARITY [J].
Xianping He ;
Jingjing Feng ;
Qinlong Wang .
AnnalsofDifferentialEquations, 2014, 30 (02) :150-156