Isomerization of Perylene Diimide Based Acceptors Enabling High-Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor

被引:75
|
作者
Luo, Zhenghui [1 ,2 ]
Liu, Tao [3 ,4 ,5 ]
Chen, Zhanxiang [1 ]
Xiao, Yiqun [6 ]
Zhang, Guangye [4 ,5 ]
Huo, Lijun [3 ]
Zhong, Cheng [1 ]
Lu, Xinhui [6 ]
Yan, He [4 ,5 ]
Sun, Yanming [3 ]
Yang, Chuluo [1 ,2 ]
机构
[1] Wuhan Univ, Dept Chem, Hubei Key Lab Organ & Polymer Optoelect Mat, Wuhan 430072, Hubei, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
[3] Beihang Univ, Sch Chem, Beijing 100191, Peoples R China
[4] HKUST, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Dept Chem, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
[5] HKUST, Chinese Natl Engn Res Ctr Tissue Restorat & Recon, Hong Kong Branch, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
[6] Chinese Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
fill factor; isomerization; organic solar cells; perylene diimide; small molecular acceptors; NON-FULLERENE-ACCEPTOR; SMALL-MOLECULE ACCEPTOR; ELECTRON-ACCEPTORS; ENERGY-LEVEL; RING-FUSION; POLYMER; EFFICIENCY; PDI; CORE; UNIT;
D O I
10.1002/advs.201802065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A strategy that employs the central-core regiochemistry to develop two isomeric perylene diimide (PDI)-based small molecular acceptors (SMAs), BPT-Se and BPT-Se1, is introduced, and the effect of the central-core regiochemistry on the optical, electronic, charge-transport, photovoltaic, and morphological properties of the molecules and their devices is investigated. The PDBT-T1:BPT-Se1-based device delivers a power conversion efficiency (PCE) of 9.54% with an excellent fill factor (FF) of 73.2%, while the BPT-Se-based device yields a PCE of 7.78%. The large improvement of PCE upon isomerization of BPT-Se should be ascribed to the concurrent enhancement of FF, short circuit current ( J(SC)), and open circuit voltage (V-OC) of the PDBT-T1:BPT-Se1 devices. The higher FF of the organic solar cells (OSCs) based on PDBT-T1:BPT-Se1 can be attributed to the higher charge dissociation and charge collection efficiency, less bimolecular combination, more balanced mu(h)/mu(e), better molecular packing and a more favorable morphology. It is worth mentioning that the FF of 73.2% is the highest value for PDI-based SMAs OSCs to date. The result shows that regiochemistry of the central core in PDI-based SMAs greatly affects the physicochemical properties and photovoltaic performance. The success of the isomerization strategy offers exciting prospects for the molecular design of PDI-based SMAs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Conformation Flipping of Asymmetric Nonfullerene Acceptors Enabling High-Performance Organic Solar Cells with 77% Fill Factors
    Zhu, Jintao
    Zhang, Zhuohan
    Lan, Ai
    Zhou, Jialing
    Lv, Yifan
    Lu, Hong
    Zhou, Erjun
    Do, Hainam
    Chen, Zhi-Kuan
    Chen, Fei
    SOLAR RRL, 2023, 7 (13)
  • [2] Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling High-Performance Organic Solar Cells
    Chen, Yuzhong
    Bai, Fujin
    Peng, Zhengxing
    Zhu, Lei
    Zhang, Jianquan
    Zou, Xinhui
    Qin, Yunpeng
    Kim, Ha Kyung
    Yuan, Jun
    Ma, Lik-Kuen
    Zhang, Jie
    Yu, Han
    Chow, Philip C. Y.
    Huang, Fei
    Zou, Yingping
    Ade, Harald
    Liu, Feng
    Yan, He
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)
  • [3] Perylene Diimide-Based Zwitterion as the Cathode Interlayer for High-Performance Nonfullerene Polymer Solar Cells
    Song, Changjian
    Liu, Xiaohui
    Li, Xiaodong
    Wang, Ying-Chiao
    Wan, Li
    Sun, Xiaohua
    Zhang, Wenjun
    Fang, Junfeng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) : 14986 - 14992
  • [4] Symmetry-Induced Orderly Assembly Achieving High-Performance Perylene Diimide-Based Nonfullerene Organic Solar Cells
    Chen, Shangshang
    Meng, Dong
    Huang, Jiachen
    Liang, Ningning
    Li, Yan
    Liu, Feng
    Yan, He
    Wang, Zhaohui
    CCS CHEMISTRY, 2021, 3 (08): : 78 - 84
  • [5] Novel perylene diimide acceptor for nonfullerene organic solar cells
    Liang, Yuming
    Deng, Ping
    Wang, Zhongtao
    Guo, Zhiyong
    Lei, Yanlian
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (03)
  • [6] Nonfullerene acceptors with an N-annulated perylene core and two perylene diimide units for efficient organic solar cells
    Qureshi, Muhammad Bilal Ahmed
    Li, Miao
    Wang, Hang
    Song, Jinsheng
    Bo, Zhishan
    DYES AND PIGMENTS, 2020, 173
  • [7] Modulation of End Groups for Low-Bandgap Nonfullerene Acceptors Enabling High-Performance Organic Solar Cells
    Chen, Yuzhong
    Liu, Tao
    Hu, Huawei
    Ma, Tingxuan
    Lai, Joshua Yuk Lin
    Zhang, Jianquan
    Ade, Harald
    Yan, He
    ADVANCED ENERGY MATERIALS, 2018, 8 (27)
  • [8] A perylene diimide-containing acceptor enables high fill factor in organic solar cells
    Ding, Kui
    Shan, Tong
    Xu, Jinqiu
    Li, Mengyang
    Wang, Yan
    Zhang, Yi
    Xie, Ziyi
    Ma, Zaifei
    Liu, Feng
    Zhong, Hongliang
    CHEMICAL COMMUNICATIONS, 2020, 56 (77) : 11433 - 11436
  • [9] Rhodanine Substitution of Asymmetric Nonfullerene Acceptors for High-Performance Organic Solar Cells
    Li, Qingbin
    Bai, Yang
    Jiang, Shuai
    Zhang, Ti
    Wang, Xiaofei
    Li, Qiuzhen
    Xue, Lingwei
    Yan, Qingzhi
    Zhou, Erjun
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (06) : 9315 - 9321
  • [10] Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells
    Zhao, Donglin
    Wu, Qinghe
    Cai, Zhengxu
    Zheng, Tianyue
    Chen, Wei
    Lu, Jessica
    Yu, Luping
    CHEMISTRY OF MATERIALS, 2016, 28 (04) : 1139 - 1146