Quadratic Residues and Non-residues for Infinitely Many Piatetski-Shapiro Primes

被引:1
|
作者
Xi, Ping [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic residue; quadratic non-residue; Piatetski-Shapiro prime; NUMBERS;
D O I
10.1007/s10114-012-1227-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a quantitative version of the statement that every nonempty finite subset of N+ is a set of quadratic residues for infinitely many primes of the form [n(c)] with 1 <= c <= 243/205. Correspondingly, we can obtain a similar result for the case of quadratic non-residues under reasonable assumptions. These results generalize the previous ones obtained by Wright in certain aspects.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 29 条
  • [21] Roth-type theorem for nonlinear equations in Piatetski-Shapiro primes
    Ren, Xiumin
    Sun, Yu-Chen
    Zhang, Qingqing
    Zhang, Rui
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (04) : 887 - 902
  • [22] On a Piatetski-Shapiro analog problem over almost-primes
    Zhai, W. -g.
    Zhao, Y. -t.
    ACTA MATHEMATICA HUNGARICA, 2023, 170 (02) : 616 - 632
  • [23] On Chen's theorem over Piatetski-Shapiro type primes and almost-primes
    Li, Jinjiang
    Xue, Fei
    Zhang, Min
    RAMANUJAN JOURNAL, 2024, 65 (03) : 1323 - 1362
  • [24] Vinogradov's three primes theorem in the intersection of multiple Piatetski-Shapiro sets
    Li, Xiaotian
    Li, Jinjiang
    Zhang, Min
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [25] The ternary Goldbach problem with two Piatetski-Shapiro primes and a prime with a missing digit
    Maier, Helmut
    Rassias, Michael Th
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (02)
  • [26] Roth-type Theorem for High-power System in Piatetski-Shapiro primes
    Zhang, Qingqing
    Zhang, Rui
    FRONTIERS OF MATHEMATICS, 2025, 20 (01): : 67 - 86
  • [27] Quadratic residues and quartic residues modulo primes
    Sun, Zhi-Wei
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2020, 16 (08) : 1833 - 1858
  • [28] A Bombieri-Vinogradov-type result for exponential sums over Piatetski-Shapiro primes
    Dimitrov, Stoyan Ivanov
    LITHUANIAN MATHEMATICAL JOURNAL, 2022, 62 (04) : 435 - 446
  • [29] ABC implies there are infinitely many non-Fibonacci-Wieferich primes
    Peng, Wayne
    JOURNAL OF NUMBER THEORY, 2020, 212 : 354 - 375