Quadratic Residues and Non-residues for Infinitely Many Piatetski-Shapiro Primes

被引:1
|
作者
Xi, Ping [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic residue; quadratic non-residue; Piatetski-Shapiro prime; NUMBERS;
D O I
10.1007/s10114-012-1227-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a quantitative version of the statement that every nonempty finite subset of N+ is a set of quadratic residues for infinitely many primes of the form [n(c)] with 1 <= c <= 243/205. Correspondingly, we can obtain a similar result for the case of quadratic non-residues under reasonable assumptions. These results generalize the previous ones obtained by Wright in certain aspects.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 29 条
  • [1] Quadratic Residues and Non-residues for Infinitely Many Piatetski-Shapiro Primes
    Ping XI
    Acta Mathematica Sinica,English Series, 2013, (03) : 515 - 522
  • [2] Quadratic residues and non-residues for infinitely many Piatetski-Shapiro primes
    Ping Xi
    Acta Mathematica Sinica, English Series, 2013, 29 : 515 - 522
  • [3] Patterns of quadratic residues and nonresidues for infinitely many primes
    Wright, Steve
    JOURNAL OF NUMBER THEORY, 2007, 123 (01) : 120 - 132
  • [4] An Additive Problem on Piatetski-Shapiro Primes
    Lu, Ya Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (02) : 255 - 264
  • [5] Piatetski-Shapiro primes in arithmetic progressions
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    RAMANUJAN JOURNAL, 2023, 60 (03) : 677 - 692
  • [6] An additive problem on Piatetski-Shapiro primes
    Ya Ming Lu
    Acta Mathematica Sinica, English Series, 2018, 34 : 255 - 264
  • [7] Piatetski-Shapiro primes from almost primes
    Baker, Roger C.
    Banks, William D.
    Guo, Zhenyu V.
    Yeager, Aaron M.
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (03): : 357 - 370
  • [8] Roth-type theorem for quadratic system in Piatetski-Shapiro primes
    Ren, Xiumin
    Zhang, Qingqing
    Zhang, Rui
    JOURNAL OF NUMBER THEORY, 2024, 257 : 1 - 23
  • [9] Almost primes in Piatetski-Shapiro sequences
    Guo, Victor Zhenyu
    AIMS MATHEMATICS, 2021, 6 (09): : 9536 - 9546
  • [10] An Additive Problem on Piatetski-Shapiro Primes
    Ya Ming LU
    Acta Mathematica Sinica,English Series, 2018, (02) : 255 - 264