Hypertrophy Signaling Pathways in Experimental Chronic Aortic Regurgitation

被引:14
作者
Olsen, Niels Thue [1 ,2 ]
Dimaano, Veronica L. [1 ]
Fritz-Hansen, Thomas [2 ]
Sogaard, Peter [3 ]
Chakir, Khalid [1 ]
Eskesen, Kristian [1 ,2 ]
Steenbergen, Charles [1 ]
Kass, David A. [1 ]
Abraham, Theodore P. [1 ]
机构
[1] Johns Hopkins Med Inst, Div Cardiol, Baltimore, MD 21287 USA
[2] Gentofte Univ Hosp, Dept Cardiol, DK-2900 Copenhagen, Denmark
[3] Aalborg Univ, Fac Hlth Sci, DK-9220 Aalborg, Denmark
关键词
Aortic valve regurgitation; Animal models of human disease remodeling; Hypertrophy; Ventricular function; Proteins; PATHOLOGICAL CARDIAC-HYPERTROPHY; VOLUME OVERLOAD; PRESSURE-OVERLOAD; HEART-FAILURE; KINASE-II; EXPRESSION; GROWTH; CARDIOMYOPATHY; ADAPTATION; ACTIVATION;
D O I
10.1007/s12265-013-9503-y
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging one or two valve cusps, resulting in eccentric remodeling and left ventricular dysfunction, with no increase in overall fibrosis. Western blotting showed increased activation of Akt and p38 at 12 weeks and of c-Jun amino-terminal kinase at 2 weeks, decreased activation of extracellular regulated kinase 5 at both 2 and 12 weeks, while activation of calcium/calmodulin-dependent protein kinase II and extracellular regulated kinase 1/2 was unchanged. Expression of calcineurin and ANF was also unchanged. Eccentric hypertrophy and early cardiac dysfunction in experimental AR are associated with a pattern of activation of intracellular pathways different from that seen with pathological hypertrophy in pressure overload, and more similar to that associated with benign physiological hypertrophy.
引用
收藏
页码:852 / 860
页数:9
相关论文
共 50 条
  • [31] Reverse remodelling after aortic valve replacement for chronic aortic regurgitation
    Koga-Ikuta, Ayumi
    Fukushima, Satsuki
    Kawamoto, Naonori
    Saito, Tetsuya
    Shimahara, Yusuke
    Yajima, Shin
    Tadokoro, Naoki
    Kakuta, Takashi
    Fukui, Toshihiro
    Fujita, Tomoyuki
    INTERACTIVE CARDIOVASCULAR AND THORACIC SURGERY, 2021, 33 (01) : 10 - 18
  • [32] Spontaneous Aortic Regurgitation and Valvular Cardiomyopathy in Mice
    Hajj, Georges P.
    Chu, Yi
    Lund, Donald D.
    Magida, Jason A.
    Funk, Nathan D.
    Brooks, Robert M.
    Baumbach, Gary L.
    Zimmerman, Kathy A.
    Davis, Melissa K.
    El Accaoui, Ramzi N.
    Hameed, Tariq
    Doshi, Hardik
    Chen, BiYi
    Leinwand, Leslie A.
    Song, Long-Sheng
    Heistad, Donald D.
    Weiss, Robert M.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2015, 35 (07) : 1653 - 1662
  • [33] Mechanism of Eccentric Cardiomyocyte Hypertrophy Secondary to Severe Mitral Regurgitation
    Li, Shujuan
    Ngoc Uyen Nhi Nguyen
    Xiao, Feng
    Menendez-Montes, Ivan
    Nakada, Yuji
    Tan, Wilson Lek Wen
    Anene-Nzelu, Chukwuemeka George
    Foo, Roger S.
    Thet, Suwannee
    Cardoso, Alisson Campos
    Wang, Ping
    Elhelaly, Waleed M.
    Lam, Nicholas T.
    Pereira, Ana Helena Macedo
    Hill, Joseph A.
    Sadek, Hesham A.
    CIRCULATION, 2020, 141 (22) : 1787 - 1799
  • [34] Fibroblast-specific TGF-β signaling mediates cardiac dysfunction, fibrosis, and hypertrophy in obese diabetic mice
    Tuleta, Izabela
    Hanna, Anis
    Humeres, Claudio
    Aguilan, Jennifer T.
    Sidoli, Simone
    Zhu, Fenglan
    Frangogiannis, Nikolaos G.
    CARDIOVASCULAR RESEARCH, 2024, 120 (16) : 2047 - 2063
  • [35] Left ventricular response in the transition from hypertrophy to failure recapitulates distinct roles of Akt, β-arrestin-2, and CaMKII in mice with aortic regurgitation
    Wu, Jian
    You, Jieyun
    Wang, Xiaoyan
    Wang, Shijun
    Huang, Jiayuan
    Xie, Qihai
    Gong, Baoyong
    Ding, Zhiwen
    Ye, Yong
    Wang, Cong
    Kang, Le
    Xu, Ran
    Li, Yang
    Chen, Ruizhen
    Sun, Aijun
    Yang, Xiangdong
    Jiang, Hong
    Yang, Fenghua
    Backx, Peter H.
    Ge, Junbo
    Zou, Yunzeng
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (05)
  • [36] Andrographolide Protects against Aortic Banding-Induced Experimental Cardiac Hypertrophy by Inhibiting MAPKs Signaling
    Wu, Qing Q.
    Ni, Jian
    Zhang, Ning
    Liao, Hai H.
    Tang, Qi Z.
    Deng, Wei
    FRONTIERS IN PHARMACOLOGY, 2017, 8
  • [37] Signaling pathways predisposing to chronic kidney disease progression
    Zaidan, Mohamad
    Burtin, Martine
    Zhang, Jitao David
    Blanc, Thomas
    Barre, Pauline
    Garbay, Serge
    Nguyen, Clement
    Vasseur, Florence
    Yammine, Lucie
    Germano, Serena
    Badi, Laura
    Gubler, Marie-Claire
    Gallazzini, Morgan
    Friedlander, Gerard
    Pontoglio, Marco
    Terzi, Fabiola
    JCI INSIGHT, 2020, 5 (09)
  • [38] MYOFIBRILLAR PROTEIN-TURNOVER IN CARDIAC-HYPERTROPHY DUE TO AORTIC REGURGITATION
    MAGID, NM
    WALLERSON, DC
    BORER, JS
    CARDIOLOGY, 1993, 82 (01) : 20 - 29
  • [39] Carboxyl-Terminal Modulator Protein Ameliorates Pathological Cardiac Hypertrophy by Suppressing the Protein Kinase B Signaling Pathway
    Liu, Xiaoxiong
    Yang, Qin
    Zhu, Li-Hua
    Liu, Jia
    Deng, Ke-Qiong
    Zhu, Xue-Yong
    Liu, Ye
    Gong, Jun
    Zhang, Peng
    Li, Shuyan
    Xia, Hao
    She, Zhi-Gang
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (13):
  • [40] Lingguizhugan decoction dynamically regulates MAPKs and AKT signaling pathways to retrogress the pathological progression of cardiac hypertrophy to heart failure
    Chen, Yao
    Li, Lin
    Hu, Cunyu
    Zhao, Xin
    Zhang, Peng
    Chang, Yanxu
    Shang, Ye
    Pang, Yafen
    Qian, Weiqiang
    Qiu, Xianzhe
    Zhang, Hongxia
    Zhang, Deqin
    Zhang, Shukun
    Li, Yuhong
    PHYTOMEDICINE, 2022, 98