Modularity on vertex operator algebras arising from semisimple primary vectors

被引:9
作者
Yamauchi, H [1 ]
机构
[1] Univ Tsukuba, Grad Sch Math, Tsukuba, Ibaraki 3058571, Japan
关键词
vertex operator algebra; modular invariance; abelian coset construction;
D O I
10.1142/S0129167X04002193
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, using an idea of the physics superselection principal, we study a modularity on vertex operator algebras arising from semisimple primary vectors. We generalizes the theta functions on vertex operator algebras and prove that the internal automorphisms do not change the genus one twisted conformal blocks.
引用
收藏
页码:87 / 109
页数:23
相关论文
共 19 条
[1]  
ABE T, IN PRESS T AM MATH S
[2]   A spanning set for VOA modules [J].
Buhl, G .
JOURNAL OF ALGEBRA, 2002, 254 (01) :125-151
[3]   THE OPERATOR ALGEBRA OF ORBIFOLD MODELS [J].
DIJKGRAAF, R ;
VAFA, C ;
VERLINDE, E ;
VERLINDE, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (03) :485-526
[4]  
Dong C., 1993, PROGR MATH, V112
[5]   Twisted representations of vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :571-600
[6]   Regularity of rational vertex operator algebras [J].
Dong, CY ;
Li, HS ;
Mason, G .
ADVANCES IN MATHEMATICS, 1997, 132 (01) :148-166
[7]   Modular-invariance of trace functions in orbifold theory and generalized moonshine [J].
Dong, CY ;
Li, HS ;
Mason, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :1-56
[8]  
Dong CY, 1998, INT MATH RES NOTICES, V1998, P389
[9]  
GABERDIEL M, DAMTP200111
[10]  
Li, 1996, CONT MATH, V193, P203