Lifting n-dimensional Galois representations

被引:4
作者
Hamblen, Spencer [1 ]
机构
[1] McDaniel Coll, Dept Math & Comp Sci, Westminster, MD 21157 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2008年 / 60卷 / 05期
关键词
D O I
10.4153/CJM-2008-046-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the problem of deforming n-dimensional mod p Galois representations to characteristic zero. The existence of 2-dimensional deformations has been proven under certain conditions by allowing ramification at additional primes in order to annihilate a dual Selmer group. We Use the same general methods to prove the existence of n-dimensional deformations. We then examine under which conditions we may place restrictions on the shape of our deformations at p, with the goal of showing that under the correct conditions, the deformations may have locally geometric shape. We also use the existence of these deformations to prove the existence as Galois groups over Q of certain infinite Subgroups of p-adic general linear groups.
引用
收藏
页码:1028 / 1049
页数:22
相关论文
共 23 条
[1]   An analogue of Serre's conjecture for Galois representations and Hecke eigenclasses in the mod p cohomology of GL(n, Z) [J].
Ash, A ;
Sinnott, W .
DUKE MATHEMATICAL JOURNAL, 2000, 105 (01) :1-24
[2]   MOD l representations of arithmetic fundamental groups, I:: An analog of Serre's conjecture for function fields [J].
Böckle, G ;
Khare, C .
DUKE MATHEMATICAL JOURNAL, 2005, 129 (02) :337-369
[3]  
Darmon H., 1995, CURRENT DEV MATH, P1
[4]  
DIAMOND F, 1997, MODULAR FORMS FERMAT
[5]  
FONTAINE JM, 1995, SER NUM THEORY, V1, P41
[6]  
FONTAINE JM, 1994, ASTERISQUE, P113
[7]  
Ion Patrick, 2002, SPRINGER MG MATH
[8]  
Mazur B., 1989, Math. Sci. Res. Inst. Publ., P385, DOI DOI 10.1007/978-1-4613-9649-9
[9]  
NEUKIRCH J, 2000, GRUNDLEHREN MATH WIS, V323
[10]  
Neukirch J., 2013, Algebraic Number Theory, V322