On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space

被引:10
作者
de Lima, Henrique F. [1 ]
Velasquez, Marco A. L. [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58429970 Campina Grande, PB, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2013年 / 44卷 / 01期
关键词
de Sitter space; spacelike hypersurfaces; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinder; CONSTANT SCALAR CURVATURE; MEAN-CURVATURE;
D O I
10.1007/s00574-013-0003-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our purpose is to study the geometry of linear Weingarten spacelike hypersurfaces immersed in the de Sitter space . In this setting, by using as main analytical tool a suitable maximum principle for complete noncompact Riemannian manifolds, we establish new characterizations of the hyperbolic cylinders of . In the compact case, we obtain a rigidity result concerning to a such hypersurface according to the length of its second fundamental form.
引用
收藏
页码:49 / 65
页数:17
相关论文
共 30 条
[1]  
Abe N., 1987, YOKOHAMA MATH J, V35, P123
[2]   ON SPACELIKE HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN THE DE SITTER SPACE [J].
AKUTAGAWA, K .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) :13-19
[3]   HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN SPHERES [J].
ALENCAR, H ;
DOCARMO, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1223-1229
[4]   Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap theorem [J].
Brasil, A ;
Colares, AG ;
Palmas, O .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (03) :847-866
[5]  
Calabi E., 1977, Math. Proc. Cambridge Philos. Soc., V82, P489
[6]   Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space [J].
Camargo, F. E. C. ;
Chaves, R. M. B. ;
Sousa, L. A. M., Jr. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) :592-599
[7]   A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds [J].
Caminha, A. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (06) :652-659
[8]   The geometry of closed conformal vector fields on Riemannian spaces [J].
Caminha, A. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02) :277-300
[9]  
Cartan E., 1938, Ann. Mat. Pura Appl., V17, P177
[10]  
Cheng Q. M., 1990, MEM FS KYUSHU U A, V44, P67