EMBEDDING COCYCLIC D-OPTIMAL DESIGNS IN COCYCLIC HADAMARD MATRICES

被引:0
作者
Alvarez, Victor [1 ]
Andres Armario, Jose [1 ]
Dolores Frau, Maria [1 ]
Guidiel, Felix [1 ]
机构
[1] Univ Seville, Dept Appl Math 1, E-41012 Seville, Spain
关键词
D-optimal Designs; Cocyclic Hadamard matrices; Embedded matrices; Gaussian elimination pivots; GROWTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method for embedding cocyclic submatrices with "large" determinants of orders 2t in certain cocyclic Hadamard matrices of orders 4t is described (t an odd integer). If these determinants attain the largest possible value, we are embedding D-optimal designs. Applications to the pivot values that appear when Gaussian elimination with complete pivoting is performed on these cocyclic Hadamard matrices are studied.
引用
收藏
页码:66 / 82
页数:17
相关论文
共 29 条
  • [21] KHARAGHANI H, 2006, HDB COMBINATORIAL DE, P317
  • [22] Koukouvinos C., 2000, B I COMBIN APPL, V29, P39
  • [23] The growth factor of a Hadamard matrix of order 16 is 16
    Kravvaritis, Christos
    Mitrouli, Marilena
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (09) : 715 - 743
  • [24] Mac Lane S., 1975, Homology, Classics in Mathematics
  • [25] D-optimal designs embedded in Hadamard matrices and their effect on the pivot patterns
    Mitrouli, M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (07) : 1761 - 1772
  • [26] Orrick W., THE HADAMARD MAXIMAL
  • [27] The maximal determinant and subdeterminants of ±1 matrices
    Seberry, J
    Xia, TB
    Koukouvinos, C
    Mitrouli, M
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 : 297 - 310
  • [28] Some remarks on Hadamard matrices
    Seberry, Jennifer
    Mitrouli, Marilena
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2010, 2 (02): : 293 - 306
  • [29] Wojtas W., 1964, C MATH, V12, P73, DOI DOI 10.4064/CM-12-1-73-83