EMBEDDING COCYCLIC D-OPTIMAL DESIGNS IN COCYCLIC HADAMARD MATRICES

被引:0
作者
Alvarez, Victor [1 ]
Andres Armario, Jose [1 ]
Dolores Frau, Maria [1 ]
Guidiel, Felix [1 ]
机构
[1] Univ Seville, Dept Appl Math 1, E-41012 Seville, Spain
关键词
D-optimal Designs; Cocyclic Hadamard matrices; Embedded matrices; Gaussian elimination pivots; GROWTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method for embedding cocyclic submatrices with "large" determinants of orders 2t in certain cocyclic Hadamard matrices of orders 4t is described (t an odd integer). If these determinants attain the largest possible value, we are embedding D-optimal designs. Applications to the pivot values that appear when Gaussian elimination with complete pivoting is performed on these cocyclic Hadamard matrices are studied.
引用
收藏
页码:66 / 82
页数:17
相关论文
共 29 条
  • [1] A system of equations for describing cocyclic Hadamard matrices
    Alvarez, V.
    Armario, J. A.
    Frau, M. D.
    Real, P.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (04) : 276 - 290
  • [2] The maximal determinant of cocyclic (-1,1)-matrices over D2t
    Alvarez, V.
    Armario, J. A.
    Frau, M. D.
    Gudiel, F.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (04) : 858 - 873
  • [3] The homological reduction method for computing cocyclic Hadamard matrices
    Alvarez, V.
    Armario, J. A.
    Frau, M. D.
    Real, P.
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (05) : 558 - 570
  • [4] On an inequivalence criterion for cocyclic Hadamard matrices
    Andres Armario, Jose
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2010, 2 (02): : 247 - 259
  • [5] [Anonymous], 2007, Hadamard Matrices and Their Applications
  • [6] Barba G., 1933, Glornale Mat. Battaglini, P70
  • [7] Craigen R., 2006, HDB COMBINATORIAL DE, P273
  • [8] PIVOT SIZE IN GAUSSIAN ELIMINATION
    CRYER, CW
    [J]. NUMERISCHE MATHEMATIK, 1968, 12 (04) : 335 - &
  • [9] GROWTH IN GAUSSIAN-ELIMINATION
    DAY, J
    PETERSON, B
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (06) : 489 - 513
  • [10] De Launey W., 1993, Designs, Codes and Cryptography, V3, P75, DOI 10.1007/BF01389357