Site identification in high-throughput RNA-protein interaction data

被引:225
|
作者
Uren, Philip J. [1 ]
Bahrami-Samani, Emad [1 ]
Burns, Suzanne C. [2 ]
Qiao, Mei [2 ]
Karginov, Fedor V. [3 ]
Hodges, Emily [3 ]
Hannon, Gregory J. [3 ]
Sanford, Jeremy R. [4 ]
Penalva, Luiz O. F. [2 ]
Smith, Andrew D. [1 ]
机构
[1] Univ So Calif, Los Angeles, CA 90089 USA
[2] Univ Texas Hlth Sci Ctr San Antonio, Childrens Canc Res Inst, San Antonio, TX 78229 USA
[3] Cold Spring Harbor Lab, Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
[4] Univ Calif Santa Cruz, Dept Mol Cellular & Dev Biol, Santa Cruz, CA 95060 USA
基金
美国国家卫生研究院;
关键词
BINDING PROTEIN; NUCLEOTIDE RESOLUTION; WIDE IDENTIFICATION; CELL-PROLIFERATION; INTERACTION MAPS; STEM-CELLS; PAR-CLIP; SEQ DATA; MICRORNAS; DISEASE;
D O I
10.1093/bioinformatics/bts569
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Post-transcriptional and co-transcriptional regulation is a crucial link between genotype and phenotype. The central players are the RNA-binding proteins, and experimental technologies [such as cross-linking with immunoprecipitation-(CLIP-) and RIP-seq] for probing their activities have advanced rapidly over the course of the past decade. Statistically robust, flexible computational methods for binding site identification from high-throughput immunoprecipitation assays are largely lacking however. Results: We introduce a method for site identification which provides four key advantages over previous methods: (i) it can be applied on all variations of CLIP and RIP-seq technologies, (ii) it accurately models the underlying read-count distributions, (iii) it allows external covariates, such as transcript abundance (which we demonstrate is highly correlated with read count) to inform the site identification process and (iv) it allows for direct comparison of site usage across cell types or conditions.
引用
收藏
页码:3013 / 3020
页数:8
相关论文
共 50 条
  • [31] Identification and Characterization of miRNA Transcriptome in Potato by High-Throughput Sequencing
    Zhang, Runxuan
    Marshall, David
    Bryan, Glenn J.
    Hornyik, Csaba
    PLOS ONE, 2013, 8 (02):
  • [32] Transcriptome-wide ribonuclease-mediated protein footprinting to identify RNA-protein interaction sites
    Silverman, Ian M.
    Gregory, Brian D.
    METHODS, 2015, 72 : 76 - 85
  • [33] Functional characterization of RNA fragments using high-throughput interactome screening
    Jackowiak, Paulina
    Lis, Angelika
    Luczak, Magdalena
    Stolarek, Ireneusz
    Figlerowicz, Marek
    JOURNAL OF PROTEOMICS, 2019, 193 : 173 - 183
  • [34] Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories
    't Hoen, Peter A. C.
    Friedlaender, Marc R.
    Almloef, Jonas
    Sammeth, Michael
    Pulyakhina, Irina
    Anvar, Seyed Yahya
    Laros, Jeroen F. J.
    Buermans, Henk P. J.
    Karlberg, Olof
    Brannvall, Mathias
    den Dunnen, Johan T.
    van Ommen, Gert-Jan B.
    Gut, Ivo G.
    Guigo, Roderic
    Estivill, Xavier
    Syvanen, Ann-Christine
    Dermitzakis, Emmanouil T.
    Lappalainen, Tuuli
    NATURE BIOTECHNOLOGY, 2013, 31 (11) : 1015 - +
  • [35] Computational and analytical framework for small RNA profiling by high-throughput sequencing
    Fahlgren, Noah
    Sullivan, Christopher M.
    Kasschau, Kristin D.
    Chapman, Elisabeth J.
    Cumbie, Jason S.
    Montgomery, Taiowa A.
    Gilbert, Sunny D.
    Dasenko, Mark
    Backman, Tyler W. H.
    Givan, Scott A.
    Carrington, James C.
    RNA, 2009, 15 (05) : 992 - 1002
  • [36] Methods for Identification of Protein-RNA Interaction
    Xu, Juan
    Wang, Zishan
    Jin, Xiyun
    Li, Lili
    Pan, Tao
    NON-CODING RNAS IN COMPLEX DISEASES: A BIOINFORMATICS PERSPECTIVE, 2018, 1094 : 117 - 126
  • [37] SpyCLIP: an easy-to-use and high-throughput compatible CLIP platform for the characterization of protein-RNA interactions with high accuracy
    Zhao, Ya
    Zhang, Yao
    Teng, Yilan
    Liu, Kai
    Liu, Yanqing
    Li, Weihua
    Wu, Ligang
    NUCLEIC ACIDS RESEARCH, 2019, 47 (06)
  • [38] The Protein Maker: an automated system for high-throughput parallel purification
    Smith, Eric R.
    Begley, Darren W.
    Anderson, Vanessa
    Raymond, Amy C.
    Haffner, Taryn E.
    Robinson, John I.
    Edwards, Thomas E.
    Duncan, Natalie
    Gerdts, Cory J.
    Mixon, Mark B.
    Nollert, Peter
    Staker, Bart L.
    Stewart, Lance J.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2011, 67 : 1015 - 1021
  • [39] Model based heritability scores for high-throughput sequencing data
    Rudra, Pratyaydipta
    Shi, W. Jenny
    Vestal, Brian
    Russell, Pamela H.
    Odell, Aaron
    Dowell, Robin D.
    Radcliffe, Richard A.
    Saba, Laura M.
    Kechris, Katerina
    BMC BIOINFORMATICS, 2017, 18
  • [40] Efficient digest of high-throughput sequencing data in a reproducible report
    Zhang, Zhe
    Leipzig, Jeremy
    Sasson, Ariella
    Yu, Angela M.
    Perin, Juan C.
    Xie, Hongbo M.
    Sarmady, Mahdi
    Warren, Patrick V.
    White, Peter S.
    BMC BIOINFORMATICS, 2013, 14