Site identification in high-throughput RNA-protein interaction data

被引:225
|
作者
Uren, Philip J. [1 ]
Bahrami-Samani, Emad [1 ]
Burns, Suzanne C. [2 ]
Qiao, Mei [2 ]
Karginov, Fedor V. [3 ]
Hodges, Emily [3 ]
Hannon, Gregory J. [3 ]
Sanford, Jeremy R. [4 ]
Penalva, Luiz O. F. [2 ]
Smith, Andrew D. [1 ]
机构
[1] Univ So Calif, Los Angeles, CA 90089 USA
[2] Univ Texas Hlth Sci Ctr San Antonio, Childrens Canc Res Inst, San Antonio, TX 78229 USA
[3] Cold Spring Harbor Lab, Watson Sch Biol Sci, Cold Spring Harbor, NY 11724 USA
[4] Univ Calif Santa Cruz, Dept Mol Cellular & Dev Biol, Santa Cruz, CA 95060 USA
基金
美国国家卫生研究院;
关键词
BINDING PROTEIN; NUCLEOTIDE RESOLUTION; WIDE IDENTIFICATION; CELL-PROLIFERATION; INTERACTION MAPS; STEM-CELLS; PAR-CLIP; SEQ DATA; MICRORNAS; DISEASE;
D O I
10.1093/bioinformatics/bts569
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Post-transcriptional and co-transcriptional regulation is a crucial link between genotype and phenotype. The central players are the RNA-binding proteins, and experimental technologies [such as cross-linking with immunoprecipitation-(CLIP-) and RIP-seq] for probing their activities have advanced rapidly over the course of the past decade. Statistically robust, flexible computational methods for binding site identification from high-throughput immunoprecipitation assays are largely lacking however. Results: We introduce a method for site identification which provides four key advantages over previous methods: (i) it can be applied on all variations of CLIP and RIP-seq technologies, (ii) it accurately models the underlying read-count distributions, (iii) it allows external covariates, such as transcript abundance (which we demonstrate is highly correlated with read count) to inform the site identification process and (iv) it allows for direct comparison of site usage across cell types or conditions.
引用
收藏
页码:3013 / 3020
页数:8
相关论文
共 50 条
  • [21] Protein-RNA specificity by high-throughput principal component analysis of NMR spectra
    Collins, Katherine M.
    Oregioni, Alain
    Robertson, Laura E.
    Kelly, Geoff
    Ramos, Andres
    NUCLEIC ACIDS RESEARCH, 2015, 43 (06) : e41
  • [22] T he RNA structurome: high-throughput probing
    Westhof, Eric
    Romby, Pascale
    NATURE METHODS, 2010, 7 (12) : 965 - 967
  • [23] Monitored eCLIP: high accuracy mapping of RNA-protein interactions
    Hocq, Remi
    Paternina, Janio
    Alasseur, Quentin
    Genovesio, Auguste
    Le Hir, Herve
    NUCLEIC ACIDS RESEARCH, 2018, 46 (21) : 11553 - 11565
  • [24] Transcriptome-wide analysis of protein-RNA interactions using high-throughput sequencing
    Milek, Miha
    Wyler, Emanuel
    Landthaler, Markus
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2012, 23 (02) : 206 - 212
  • [25] Identification of genuine and novel miRNAs in Amaranthus hypochondriacus from high-throughput sequencing data
    Martinez Nunez, Marcelino
    Ruiz Rivas, Magali
    Gregorio Jorge, Josefat
    Vera Hernandez, Pedro Fernando
    Luna Suarez, Silvia
    de Folter, Stefan
    Chavez Montes, Ricardo A.
    Rosas Cardenas, Flor de Fatima
    GENOMICS, 2021, 113 (01) : 88 - 103
  • [26] Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data
    Sievers, Cem
    Schlumpf, Tommy
    Sawarkar, Ritwick
    Comoglio, Federico
    Paro, Renato
    NUCLEIC ACIDS RESEARCH, 2012, 40 (20) : e160
  • [27] RNA-Targeted Therapies and High-Throughput Screening Methods
    Zhu, Siran
    Rooney, Saul
    Michlewski, Gracjan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (08)
  • [28] High-throughput detection of RNA modifications at single base resolution
    Ron, Keren
    Kahn, Joshua
    Malka-Tunitsky, Nofar
    Sas-Chen, Aldema
    FEBS LETTERS, 2025, 599 (01) : 19 - 32
  • [29] Identification of genetic elements in metabolism by high-throughput mouse phenotyping
    Rozman, Jan
    Rathkolb, Birgit
    Oestereicher, Manuela A.
    Schuett, Christine
    Ravindranath, Aakash Chavan
    Leuchtenberger, Stefanie
    Sharma, Sapna
    Kistler, Martin
    Willershaeuser, Monja
    Brommage, Robert
    Meehan, Terrence F.
    Mason, Jeremy
    Haselimashhadi, Hamed
    Hough, Tertius
    Mallon, Ann-Marie
    Wells, Sara
    Santos, Luis
    Lelliott, Christopher J.
    White, Jacqueline K.
    Sorg, Tania
    Champy, Marie-France
    Bower, Lynette R.
    Reynolds, Corey L.
    Flenniken, Ann M.
    Murray, Stephen A.
    Nutter, Lauryl M. J.
    Svenson, Karen L.
    West, David
    Tocchini-Valentini, Glauco P.
    Beaudet, Arthur L.
    Bosch, Fatima
    Braun, Robert B.
    Dobbie, Michael S.
    Gao, Xiang
    Herault, Yann
    Moshiri, Ala
    Moore, Bret A.
    Lloyd, K. C. Kent
    McKerlie, Colin
    Masuya, Hiroshi
    Tanaka, Nobuhiko
    Flicek, Paul
    Parkinson, Helen E.
    Sedlacek, Radislav
    Seong, Je Kyung
    Wang, Chi-Kuang Leo
    Moore, Mark
    Brown, Steve D.
    Tschoep, Matthias H.
    Wurst, Wolfgang
    NATURE COMMUNICATIONS, 2018, 9
  • [30] Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5
    Francisco-Velilla, Rosario
    Azman, Embarc-Buh
    Martinez-Salas, Encarnacion
    BIOESSAYS, 2019, 41 (04)