Two-Dimensional Interpolation of Functions with Large Gradients in Boundary Layers

被引:0
作者
Zadorin, Alexander [1 ]
机构
[1] Sobolev Math Inst SB RAS, Omsk Branch, Pevtsova 13, Omsk 644043, Russia
来源
NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016) | 2017年 / 10187卷
基金
俄罗斯基础研究基金会;
关键词
Function of two variables; Boundary layer; Polynomial interpolation; Shishkin mesh; Nonpolynomial interpolation;
D O I
10.1007/978-3-319-57099-0_88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Question of two-dimensional interpolation of functions with large gradients in the boundary layers is considered. The problem is that an application of polynomial interpolation on an uniform mesh to functions with large gradients leads to significant errors. We consider two approaches for increase of accuracy of interpolation: a fitting of the interpolation formula to a boundary layer component and the application of polynomial interpolation on Shishkin mesh. Numerical results are discussed.
引用
收藏
页码:760 / 768
页数:9
相关论文
共 9 条
[1]  
Bakhvalov N. S., 1975, NUMERICAL METHODS AN
[2]   Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem [J].
Linss, T ;
Stynes, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (02) :604-632
[3]  
Roos H.-G., 2008, CONVECTION DIFFUSION, V24
[4]  
Shishkin G. I., 1992, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations
[5]  
Vulkov L, 2009, AIP CONF PROC, V1186, P371, DOI 10.1063/1.3265351
[6]   Interpolation of a Function of Two Variables with Large Gradients in Boundary Layers [J].
Zadorin, A. I. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (03) :349-359
[7]  
[Задорин А.И. Zadorin A.I.], 2007, [Сибирский журнал вычислительной математики, Siberian Journal of Numerical Mathematics, Sibirskii zhurnal vychislitel'noi matematiki], V10, P267
[8]  
Zadorin AI, 2012, SIB ELECTRON MATH RE, V9, P445
[9]  
Zadorin AI, 2011, SIB ELECTRON MATH RE, V8, P247