On stress matrices of (d+1)-lateration frameworks in general position

被引:7
作者
Alfakih, A. Y. [1 ]
Taheri, Nicole [2 ]
Ye, Yinyu [3 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Universal rigidity; Stress matrices; General position; Semidefinite programming; RIGIDITY;
D O I
10.1007/s10107-011-0480-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let (G, P) be a bar framework of n vertices in general position in , for d a parts per thousand currency sign n - 1, where G is a (d + 1)-lateration graph. In this paper, we present a constructive proof that (G, P) admits a positive semidefinite stress matrix with rank (n - d - 1). We also prove a similar result for a sensor network, where the graph consists of m(a parts per thousand yen d + 1) anchors.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 23 条
[1]  
Alfakih A.Y., 2011, MATH PROG B IN PRESS
[2]  
Alfakih A.Y., 2010, CONTRIB DISCRETE MAT, V5, P7
[3]  
Alfakih A.Y., 2010, ARXIV10091185
[4]  
Alfakih A.Y., 2010, ARXIV10093318
[5]   Solving Euclidean distance matrix completion problems via semidefinite programming [J].
Alfakih, AY ;
Khandani, A ;
Wolkowicz, H .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :13-30
[6]   Graph rigidity via Euclidean distance matrices [J].
Alfakih, AY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 310 (1-3) :149-165
[7]   On rigidity and realizability of weighted graphs [J].
Alfakih, AY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) :57-70
[8]  
Aspnes J, 2004, LECT NOTES COMPUT SC, V3121, P32
[9]  
Biswas P, 2004, IPSN '04: THIRD INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS, P46
[10]   A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation [J].
Biswas, Pratik ;
Toh, Kim-Chuan ;
Ye, Yinyu .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03) :1251-1277