Magnetocaloric effect of gadolinium in high magnetic fields

被引:70
作者
Gottschall, T. [1 ]
Kuz'min, M. D. [2 ]
Skokov, K. P. [3 ]
Skourski, Y. [1 ]
Fries, M. [3 ]
Gutfleisch, O. [3 ]
Zavareh, M. Ghorbani [1 ]
Schlagel, D. L. [4 ]
Mudryk, Y. [4 ]
Pecharsky, V [4 ,5 ]
Wosnitza, J. [1 ,6 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Dresden High Magnet Field Lab HLD EMFL, D-01328 Dresden, Germany
[2] Aix Marseille Univ, IM2NP, UMR CNRS 7334, F-13397 Marseille 20, France
[3] Tech Univ Darmstadt, Inst Mat Wissensch, D-64287 Darmstadt, Germany
[4] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[6] Tech Univ Dresden, Festkorper & Mat Phys, D-01062 Dresden, Germany
关键词
Magnetocaloric effects;
D O I
10.1103/PhysRevB.99.134429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The magnetocaloric effect of gadolinium has been measured directly in pulsed magnetic fields up to 62 T. The maximum observed adiabatic temperature change is Delta T-ad = 60.5 K, the initial temperature T-0 being just above 300 K. The field dependence of Delta T-ad is found to follow the usual H-2/3 law, with a small correction in H-4/3. However, as H is increased, a radical change is observed in the dependence of Delta T-ad on T-0, at H = const. The familiar caret-shaped peak situated at T-0 = T-C becomes distinctly asymmetric, its high-temperature slope becoming more gentle and evolving into a broad plateau. For yet higher magnetic fields, mu H-0 greater than or similar to 140 T, calculations predict a complete disappearance of the maximum near T-C and an emergence of a new very broad maximum far above T-C.
引用
收藏
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 1966, Effective Field Theories of Magnetism
[2]  
Beaudry B. J., 1978, Handbook on the physics and chemistry of rare earths, vol.1. Metals, P173, DOI 10.1016/S0168-1273(78)01006-5
[3]   MAGNETIC HEAT PUMPING NEAR ROOM-TEMPERATURE [J].
BROWN, GV .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (08) :3673-3680
[4]  
DRUZHININ VV, 1979, FIZ TVERD TELA, V21, P1750
[5]   Dynamics of the magnetoelastic phase transition and adiabatic temperature change in Mn1.3Fe0.7P0.5Si0.55 [J].
Fries, M. ;
Gottschall, T. ;
Scheibel, F. ;
Pfeuffer, L. ;
Skokov, K. P. ;
Skourski, I ;
Acet, M. ;
Farle, M. ;
Wosnitza, J. ;
Gutfleisch, O. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 477 :287-291
[6]   Dynamical Effects of the Martensitic Transition in Magnetocaloric Heusler Alloys from Direct ΔTad Measurements under Different Magnetic-Field-Sweep Rates [J].
Gottschall, T. ;
Skokov, K. P. ;
Scheibel, F. ;
Acet, M. ;
Zavareh, M. Ghorbani ;
Skourski, Y. ;
Wosnitza, J. ;
Farle, M. ;
Gutfleisch, O. .
PHYSICAL REVIEW APPLIED, 2016, 5 (02)
[7]   Magnetocaloric materials [J].
Gschneidner, KA ;
Pecharsky, VK .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :387-429
[8]   Mastering hysteresis in magnetocaloric materials [J].
Gutfleisch, O. ;
Gottschall, T. ;
Fries, M. ;
Benke, D. ;
Radulov, I. ;
Skokov, K. P. ;
Wende, H. ;
Gruner, M. ;
Acet, M. ;
Entel, P. ;
Farle, M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2074)
[9]   Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn [J].
Kihara, T. ;
Xu, X. ;
Ito, W. ;
Kainuma, R. ;
Tokunaga, M. .
PHYSICAL REVIEW B, 2014, 90 (21)
[10]   Adiabatic measurements of magneto-caloric effects in pulsed high magnetic fields up to 55 T [J].
Kihara, T. ;
Kohama, Y. ;
Hashimoto, Y. ;
Katsumoto, S. ;
Tokunaga, M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (07)