The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells

被引:53
|
作者
Schloemer, Tracy H. [2 ,3 ,5 ]
Raiford, James A. [1 ]
Gehan, Timothy S. [2 ,3 ]
Moot, Taylor [2 ]
Nanayakkara, Sanjini [2 ]
Harvey, Steven P. [2 ]
Bramante, Rosemary C. [2 ]
Dunfield, Sean [2 ,6 ]
Louks, Amy E. [2 ]
Maughan, Annalise E. [2 ]
Bliss, Lyle [2 ,7 ]
McGehee, Michael D. [2 ,7 ]
van Hest, Maikel F. A. M. [2 ]
Reese, Matthew O. [2 ]
Bent, Stacey F. [1 ]
Berry, Joseph J. [2 ]
Luther, Joseph M. [2 ]
Sellinger, Alan [2 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA
[4] Colorado Sch Mines, Mat Sci Program, Golden, CO 80401 USA
[5] Harvard Univ, Rowland Inst, Cambridge, MA 02142 USA
[6] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
[7] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
HOLE-TRANSPORTING MATERIAL; LONG-TERM STABILITY; METAL-OXIDES; THERMAL-STABILITY; VANADIUM-OXIDE; LAYER; PHOTOVOLTAICS; DEGRADATION; PERFORMANCE; CRYSTALLIZATION;
D O I
10.1021/acsenergylett.0c01023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the improved operational stability of unencapsulated perovskite solar cells (PSCs) aged in an ambient atmosphere at elevated temperatures (70 degrees C) for >1000 h under constant illumination and bias at 30-50% relative humidity. We identify a previously unseen interfacial degradation mechanism concerning the use of a MoOx interlayer, which was originally added to increase operational stability. Specifically, the hole-transport layer/MoOx interface buckles under illumination at 70 degrees C, which leads to delamination and rapid losses of short-circuit current density corresponding to an average t(80) of similar to 55 h. By judiciously evaluating various hole-transport layers, interlayers, and contacts, we find that replacing the MoOx with a VOx interlayer, regardless of the other components in the solar cell, alleviates this buckling issue due to its higher activation barrier toward crystallization, leading to significant gains in PSC operational stability. Unencapsulated devices aged in an ambient atmosphere with a VOx interlayer retain 71% of their initial PCE on average after constant illumination and bias at 70 degrees C for 1100 h (t(80) similar to 645 h). Currently, this is the highest temperature reported for the operational stability of unencapsulated n-i-p PSCs aged in air. Identification of a new facet of the complex degradation mechanisms in PSCs will allow for targeted acceleration testing to speed the deployment of low-cost, long-lasting electricity generation under realistic operating temperatures.
引用
收藏
页码:2349 / 2360
页数:12
相关论文
共 50 条
  • [31] Paths towards high perovskite solar cells stability using machine learning techniques
    Mammeri, M.
    Dehimi, L.
    Bencherif, H.
    Pezzimenti, F.
    SOLAR ENERGY, 2023, 249 : 651 - 660
  • [32] Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells
    Park, So Min
    Wei, Mingyang
    Xu, Jian
    Atapattu, Harindi R.
    Eickemeyer, Felix T.
    Darabi, Kasra
    Grater, Luke
    Yang, Yi
    Liu, Cheng
    Teale, Sam
    Chen, Bin
    Chen, Hao
    Wang, Tonghui
    Zeng, Lewei
    Maxwell, Aidan
    Wang, Zaiwei
    Rao, Keerthan R.
    Cai, Zhuoyun
    Zakeeruddin, Shaik M.
    Pham, Jonathan T.
    Risko, Chad M.
    Amassian, Aram
    Kanatzidis, Mercouri G.
    Graham, Kenneth R.
    Gratzel, Michael
    Sargent, Edward H.
    SCIENCE, 2023, 381 (6654) : 209 - 215
  • [33] The influence of perovskite layer and hole transport material on the temperature stability about perovskite solar cells
    Zheng, Haiying
    Liu, Guozhen
    Zhang, Changneng
    Zhu, Liangzheng
    Alsaedi, Ahmed
    Hayat, Tasawar
    Pan, Xu
    Dai, Songyuan
    SOLAR ENERGY, 2018, 159 : 914 - 919
  • [34] Effect of the incorporation of poly(ethylene oxide) copolymer on the stability of perovskite solar cells
    da Silva, Jeann Carlos
    de Araujo, Francineide Lopes
    Szostak, Rodrigo
    Marchezi, Paulo Ernesto
    Moral, Raphael Fernando
    de Freitas, Jilian Nei
    Nogueira, Ana Flavia
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (28) : 9697 - 9706
  • [35] Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells
    Kim, Hui-Seon
    Yang, Bowen
    Stylianakis, Minas M.
    Kymakis, Emmanuel
    Zakeeruddin, Shaik M.
    Graetzel, Michael
    Hagfeldt, Anders
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (05):
  • [36] Cesium Iodide Interface Modification for High Efficiency, High Stability and Low Hysteresis Perovskite Solar Cells
    Han, Fei
    Luo, Junsheng
    Zhao, Bowen
    Wan, Zhongquan
    Wang, Ruilin
    Jia, Chunyang
    ELECTROCHIMICA ACTA, 2017, 236 : 122 - 130
  • [37] A review on the engineering of hole-transporting materials for perovskite solar cells with high efficiency and high stability
    Kim, Heesu
    Lim, Jeongin
    Park, Sungjun
    Song, Seulki
    DYES AND PIGMENTS, 2023, 218
  • [38] Incorporation of Vanadium(V) Oxide in Hybrid Hole Transport Layer Enables Long-term Operational Stability of Perovskite Solar Cells
    Tepliakova, Marina M.
    Mikheeva, Aleksandra N.
    Frolova, Lyubov A.
    Boldyreva, Aleksandra G.
    Elakshar, Aly
    Novikov, Artyom V.
    Tsarev, Sergey A.
    Ustinova, Marina I.
    Yamilova, Olga R.
    Nasibulin, Albert G.
    Aldoshin, Sergey M.
    Stevenson, Keith J.
    Troshin, Pavel A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (14) : 5563 - 5568
  • [39] Evaporated Nickel Oxide Films with Slow Annealing and Interface Modification for Perovskite Solar Cells
    Su, Jiale
    Zheng, Guoyuan
    Chen, Bitao
    Dong, Pengpeng
    Ma, Bin
    Yao, Disheng
    Tian, Nan
    Peng, Yong
    Wang, Jilin
    Long, Fei
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (18) : 23985 - 23996
  • [40] Synergistic enhancement of efficiency and stability of perovskite solar cells via dual interface modification
    He, Zhengyan
    Zhang, Shufang
    Hu, Yanqiang
    Geng, Quanming
    Zhao, Wenkai
    Wang, Dehua
    Tao, Qian
    Xu, Qinfeng
    Jiao, Mengmeng
    APPLIED SURFACE SCIENCE, 2023, 611