The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells

被引:53
|
作者
Schloemer, Tracy H. [2 ,3 ,5 ]
Raiford, James A. [1 ]
Gehan, Timothy S. [2 ,3 ]
Moot, Taylor [2 ]
Nanayakkara, Sanjini [2 ]
Harvey, Steven P. [2 ]
Bramante, Rosemary C. [2 ]
Dunfield, Sean [2 ,6 ]
Louks, Amy E. [2 ]
Maughan, Annalise E. [2 ]
Bliss, Lyle [2 ,7 ]
McGehee, Michael D. [2 ,7 ]
van Hest, Maikel F. A. M. [2 ]
Reese, Matthew O. [2 ]
Bent, Stacey F. [1 ]
Berry, Joseph J. [2 ]
Luther, Joseph M. [2 ]
Sellinger, Alan [2 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA
[4] Colorado Sch Mines, Mat Sci Program, Golden, CO 80401 USA
[5] Harvard Univ, Rowland Inst, Cambridge, MA 02142 USA
[6] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80309 USA
[7] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
HOLE-TRANSPORTING MATERIAL; LONG-TERM STABILITY; METAL-OXIDES; THERMAL-STABILITY; VANADIUM-OXIDE; LAYER; PHOTOVOLTAICS; DEGRADATION; PERFORMANCE; CRYSTALLIZATION;
D O I
10.1021/acsenergylett.0c01023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on the improved operational stability of unencapsulated perovskite solar cells (PSCs) aged in an ambient atmosphere at elevated temperatures (70 degrees C) for >1000 h under constant illumination and bias at 30-50% relative humidity. We identify a previously unseen interfacial degradation mechanism concerning the use of a MoOx interlayer, which was originally added to increase operational stability. Specifically, the hole-transport layer/MoOx interface buckles under illumination at 70 degrees C, which leads to delamination and rapid losses of short-circuit current density corresponding to an average t(80) of similar to 55 h. By judiciously evaluating various hole-transport layers, interlayers, and contacts, we find that replacing the MoOx with a VOx interlayer, regardless of the other components in the solar cell, alleviates this buckling issue due to its higher activation barrier toward crystallization, leading to significant gains in PSC operational stability. Unencapsulated devices aged in an ambient atmosphere with a VOx interlayer retain 71% of their initial PCE on average after constant illumination and bias at 70 degrees C for 1100 h (t(80) similar to 645 h). Currently, this is the highest temperature reported for the operational stability of unencapsulated n-i-p PSCs aged in air. Identification of a new facet of the complex degradation mechanisms in PSCs will allow for targeted acceleration testing to speed the deployment of low-cost, long-lasting electricity generation under realistic operating temperatures.
引用
收藏
页码:2349 / 2360
页数:12
相关论文
共 50 条
  • [1] Role of interface in stability of perovskite solar cells
    Manspeaker, Chris
    Venkatesan, Swaminathan
    Zakhidov, Alex
    Martirosyan, Karen S.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2017, 15 : 1 - 7
  • [2] High-Temperature Perovskite Solar Cells
    Dong, Zijing
    Li, Weiping
    Wang, Hailiang
    Jiang, Xiaoyu
    Liu, Huicong
    Zhu, Liqun
    Chen, Haining
    SOLAR RRL, 2021, 5 (09):
  • [3] Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability
    Christians, Jeffrey A.
    Schulz, Philip
    Tinkham, Jonathan S.
    Schloemer, Tracy H.
    Harvey, Steven P.
    de Villers, Bertrand J. Tremolet
    Sellinger, Alan
    Berry, Joseph J.
    Luther, Joseph M.
    NATURE ENERGY, 2018, 3 (01): : 68 - 74
  • [4] Enhancing Durability of Organic-Inorganic Hybrid Perovskite Solar Cells in High-Temperature Environments: Exploring Thermal Stability, Molecular Structures, and AI Applications
    Su, Shimiao
    Ahn, Taekyu
    Yang, Yun
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (01)
  • [5] Enhancing the operational stability of unencapsulated perovskite solar cells through Cu-Ag bilayer electrode incorporation
    Lin, Chieh-Ting
    Ngiam, Jonathan
    Xu, Bob
    Chang, Yu-Han
    Du, Tian
    Macdonald, Thomas J.
    Durrant, James R.
    Mclachlan, Martyn A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (17) : 8684 - 8691
  • [6] High temperature stability of dye solar cells
    Jiang, Nancy
    Sumitomo, Taro
    Lee, Timothy
    Pellaroque, Alba
    Bellon, Olivier
    Milliken, Damion
    Desilvestro, Hans
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 119 : 36 - 50
  • [7] Towards commercialization: the operational stability of perovskite solar cells
    Li, Nengxu
    Niu, Xiuxiu
    Chen, Qi
    Zhou, Huanping
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (22) : 8235 - 8286
  • [8] Investigation of the Temperature Coefficients of Perovskite Solar Cells for Application in High-Temperature Environments
    Tobe, Tomoyuki
    Shibayama, Naoyuki
    Nakamura, Yuiga
    Ikegami, Masashi
    Kanda, Hiroyuki
    Miyasaka, Tsutomu
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (19)
  • [9] Improving Stability of Triple-Cation Perovskite Solar Cells under High-Temperature Operation
    Louks, Amy E. E.
    Tirawat, Robert
    Yang, Mengjin
    Habisreutinger, Severin N. N.
    Harvey, Steven P. P.
    Schutt, Kelly
    Zhu, Kai
    Berry, Joseph J. J.
    Palmstrom, Axel F. F.
    SOLAR RRL, 2023, 7 (16)
  • [10] Enhancing operational stability in perovskite solar cells by solvent-free encapsulation method
    Salado, Manuel
    Payno, David
    Ahmad, Shahzada
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (09) : 2264 - 2275