MULTIPLE POINTS OF THE BROWNIAN SHEET IN CRITICAL DIMENSIONS

被引:6
|
作者
Dalang, Robert C. [1 ]
Mueller, Carl [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ Rochester, Dept Math, Rochester, NY 14627 USA
关键词
Brownian sheet; multiple points; Girsanov's theorem;
D O I
10.1214/14-AOP912
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that an N-parameter d-dimensional Brownian sheet has no k-multiple points when (k - 1)d > 2kN, and does have such points when (k - 1)d < 2kN. We complete the study of the existence of k-multiple points by showing that in the critical cases where (k - 1)d = 2kN, there are a.s. no k-multiple points.
引用
收藏
页码:1577 / 1593
页数:17
相关论文
共 50 条
  • [1] CRITICAL BROWNIAN SHEET DOES NOT HAVE DOUBLE POINTS
    Dalang, Robert C.
    Khoshnevisan, Davar
    Nualart, Eulalia
    Wu, Dongsheng
    Xiao, Yimin
    ANNALS OF PROBABILITY, 2012, 40 (04) : 1829 - 1859
  • [2] Adding interior points to an existing Brownian sheet lattice
    Toth, D
    STATISTICS & PROBABILITY LETTERS, 2004, 66 (03) : 221 - 227
  • [3] Brownian sheet and capacity
    Khoshnevisan, D
    Shi, Z
    ANNALS OF PROBABILITY, 1999, 27 (03) : 1135 - 1159
  • [4] On the definition of a Brownian sheet
    Alekseeva, Uliana Alekseevna
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02): : 3 - 11
  • [5] Images of the Brownian sheet
    Khoshnevisan, Davar
    Xiao, Yimin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) : 3125 - 3151
  • [6] Zeros of the Brownian Sheet
    Chen, Keming
    Woessner, Guillaume
    JOURNAL OF THEORETICAL PROBABILITY, 2025, 38 (02)
  • [7] Path Regularity of the Brownian Motion and the Brownian Sheet
    Kempka, H.
    Schneider, C.
    Vybiral, J.
    CONSTRUCTIVE APPROXIMATION, 2024, 59 (02) : 485 - 539
  • [8] Path Regularity of the Brownian Motion and the Brownian Sheet
    H. Kempka
    C. Schneider
    J. Vybiral
    Constructive Approximation, 2024, 59 : 485 - 539
  • [9] QUASI-EVERYWHERE PROPERTIES OF BROWNIAN LEVEL SETS AND MULTIPLE POINTS
    PENROSE, MD
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1990, 36 (01) : 33 - 43
  • [10] The reassembling of shattered Brownian sheet
    Pyke, R
    STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET, 2001, 36 : 518 - 532