Tubulin homolog TubZ in a phage-encoded partition system

被引:46
|
作者
Oliva, Maria A. [1 ]
Martin-Galiano, Antonio J. [1 ,2 ]
Sakaguchi, Yoshihiko [3 ]
Andreu, Jose M. [1 ]
机构
[1] Consejo Super Invest Cient, Ctr Invest Biol, Madrid 28040, Spain
[2] Inst Salud Carlos III, Ctr Nacl Microbiol, Madrid 28220, Spain
[3] Miyazaki Univ, Interdisciplinary Res Org, Kiyotake, Miyazaki 8891692, Japan
关键词
DNA segregation; cytomotive filaments; virulence; plasmid partitioning; BOTULINUM TYPE-C; BACILLUS-THURINGIENSIS SUBSP; DIVISION PROTEIN FTSZ; GENOME SEQUENCE; PLASMID; REPLICATION; GENE; BACTERIOPHAGE; SEGREGATION; INFORMATION;
D O I
10.1073/pnas.1121546109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Partition systems are responsible for the process whereby large and essential plasmids are accurately positioned to daughter cells during bacterial division. They are typically made of three components: a centromere-like DNA zone, an adaptor protein, and an assembling protein that is either a Walker-box ATPase (type I) or an actin-like ATPase (type II). A recently described type III segregation system has a tubulin/FtsZ-like protein, called TubZ, for plasmid movement. Here, we present the 2.3 angstrom structure and dynamic assembly of a TubZ tubulin homolog from a bacteriophage and unravel the Clostridium botulinum phage c-st type III partition system. Using biochemical and biophysical approaches, we prove that a gene upstream from tubZ encodes the partner TubR and localize the centromeric region (tubS), both of which are essential for anchoring phage DNA to the motile TubZ filaments. Finally, we describe a conserved fourth component, TubY, which modulates the TubZ-R-S complex interaction.
引用
收藏
页码:7711 / 7716
页数:6
相关论文
共 50 条
  • [1] Phage-Encoded Endolysins
    Abdelrahman, Fatma
    Easwaran, Maheswaran
    Daramola, Oluwasegun I.
    Ragab, Samar
    Lynch, Stephanie
    Oduselu, Tolulope J.
    Khan, Fazal Mehmood
    Ayobami, Akomolafe
    Adnan, Fazal
    Torrents, Eduard
    Sanmukh, Swapnil
    El-Shibiny, Ayman
    ANTIBIOTICS-BASEL, 2021, 10 (02): : 1 - 31
  • [2] Phage-encoded genes and Salmonella virulence
    Ali, TR
    Pallen, MJ
    MOLECULAR MICROBIOLOGY, 1998, 28 (05) : 1039 - 1040
  • [3] Molecular characterization of a phage-encoded resistance system in Lactococcus lactis
    McGrath, S
    Seegers, JFML
    Fitzgerald, GF
    van Sinderen, D
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1999, 65 (05) : 1891 - 1899
  • [4] Phage-Encoded Anti-CRISPR Defenses
    Stanley, Sabrina Y.
    Maxwell, Karen L.
    ANNUAL REVIEW OF GENETICS, VOL 52, 2018, 52 : 445 - +
  • [5] PSEUDO DOMAINS IN PHAGE-ENCODED DNA METHYLTRANSFERASES
    LANGE, C
    JUGEL, A
    WALTER, J
    NOYERWEIDNER, M
    TRAUTNER, TA
    NATURE, 1991, 352 (6336) : 645 - 648
  • [6] Phage-Encoded Cationic Antimicrobial Peptide Required for Lysis
    Holt, Ashley
    Cahill, Jesse
    Ramsey, Jolene
    Martin, Cody
    O'Leary, Chandler
    Moreland, Russell
    Maddox, Lori T.
    Galbadage, Thushara
    Sharan, Riti
    Sule, Preeti
    Cirillo, Jeffrey D.
    Young, Ry
    JOURNAL OF BACTERIOLOGY, 2022, 204 (01)
  • [7] Diverse Phage-Encoded Toxins in a Protective Insect Endosymbiont
    Degnan, Patrick H.
    Moran, Nancy A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (21) : 6782 - 6791
  • [8] Phage-Encoded Sigma Factors Alter Bacterial Dormancy
    Schwartz, D. A.
    Lehmkuhl, B. K.
    Lennon, J. T.
    MSPHERE, 2022, 7 (04)
  • [9] Characterizing the portability of phage-encoded homologous recombination proteins
    Filsinger, Gabriel T.
    Wannier, Timothy M.
    Pedersen, Felix B.
    Lutz, Isaac D.
    Zhang, Julie
    Stork, Devon A.
    Debnath, Anik
    Gozzi, Kevin
    Kuchwara, Helene
    Volf, Verena
    Wang, Stan
    Rios, Xavier
    Gregg, Christopher J.
    Lajoie, Marc J.
    Shipman, Seth L.
    Aach, John
    Laub, Michael T.
    Church, George M.
    NATURE CHEMICAL BIOLOGY, 2021, 17 (04) : 394 - +
  • [10] Characterizing the portability of phage-encoded homologous recombination proteins
    Gabriel T. Filsinger
    Timothy M. Wannier
    Felix B. Pedersen
    Isaac D. Lutz
    Julie Zhang
    Devon A. Stork
    Anik Debnath
    Kevin Gozzi
    Helene Kuchwara
    Verena Volf
    Stan Wang
    Xavier Rios
    Christopher J. Gregg
    Marc J. Lajoie
    Seth L. Shipman
    John Aach
    Michael T. Laub
    George M. Church
    Nature Chemical Biology, 2021, 17 : 394 - 402