Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation
被引:13
|
作者:
Efendiev, M
论文数: 0引用数: 0
h-index: 0
机构:Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
Efendiev, M
Miranville, A
论文数: 0引用数: 0
h-index: 0
机构:Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
Miranville, A
Zelik, S
论文数: 0引用数: 0
h-index: 0
机构:Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
Zelik, S
机构:
[1] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
[2] Univ Poitiers, Lab Applicat Math SP2MI, F-86962 Futuroscope, France
来源:
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
|
2004年
/
460卷
/
2044期
关键词:
reaction-diffusion systems;
unbounded domains;
global attractor;
exponential attractors;
Kolmogorov's entropy;
D O I:
10.1098/rspa.2003.1182
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In this paper we study the long-time behaviour of solutions of reaction-diffusion equations (RDEs) in unbounded domains of R-n. In particular, we prove that, under appropriate assumptions on the nonlinear interaction function and on the external forces, these equations possess infinite-dimensional exponential attractors whose Kolmogorov epsilon-entropy satisfies an estimate of the same type as that obtained previously for the epsilon-entropy of the global attractor. Moreover, we also study the problem of the approximation of these infinite-dimensional exponential attractors by finite-dimensional ones associated with the same RDEs in bounded domains.