Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation

被引:13
|
作者
Efendiev, M
Miranville, A
Zelik, S
机构
[1] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
[2] Univ Poitiers, Lab Applicat Math SP2MI, F-86962 Futuroscope, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2044期
关键词
reaction-diffusion systems; unbounded domains; global attractor; exponential attractors; Kolmogorov's entropy;
D O I
10.1098/rspa.2003.1182
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we study the long-time behaviour of solutions of reaction-diffusion equations (RDEs) in unbounded domains of R-n. In particular, we prove that, under appropriate assumptions on the nonlinear interaction function and on the external forces, these equations possess infinite-dimensional exponential attractors whose Kolmogorov epsilon-entropy satisfies an estimate of the same type as that obtained previously for the epsilon-entropy of the global attractor. Moreover, we also study the problem of the approximation of these infinite-dimensional exponential attractors by finite-dimensional ones associated with the same RDEs in bounded domains.
引用
收藏
页码:1107 / 1129
页数:23
相关论文
共 50 条